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1 Introduction 
 In this paper we study a class of parabolic semilinear differential inclusions, having the 

form    

{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝐹(𝑡, 𝑥), 𝑡 ∈ 𝐼 = [𝑡0, 𝑇]

𝑦(𝑡0) = 𝑦0
 (1.1) 

 

We refer the reader to the books [7, 9] for the general theory of such kind of systems. 

Evolution inclusion(1.1) is studied in the literature under some compactness or dissipative 

type assumptions. 

Assume that the evolution operator 𝐾(⋅,⋅) is compact. In this case one has to use some 

conditions of the image of 𝐹(⋅,⋅) has weak compactness of the values or the Banach space 𝑌 is 

assumed to be reflexive. We refer the reader to [2, 11]. f such conditions are not assumed then it 

is impossible practically to prove existence of mild solution. Notice also [10, 18], where measure 

of noncompactness is used. 
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In this paper we assume that 𝐴(⋅) generates a compact operator 𝐾(⋅,⋅), however, the 

values of 𝐹(⋅,⋅) are only closed bounded. We define a new type of a solutions (limit solutions) 

which have similar properties of the mild solutions. The advantage here is that the limit solution 

set is nonempty and compact.  

The dissipative type of assumptions are used commonly when 𝐴(⋅) generates an 

equicontinuous operator and 𝐹(⋅,⋅) is (locally) Lipschitz or more general locally Perron. In this case 

the solution set is nonempty but not closed even 𝐹(⋅,⋅) has closed convex and bounded values. 

Its closure is the set of the limit solutions defined and studied here. 

In the last section of this paper we use one sided Perron (OSP) assumptions and prove also 

the existence of limit solution in case 𝐹(⋅,⋅) almost continuous but 𝐴(⋅) generate only 

equicontinuous operator 𝐾(⋅,⋅). If the operator is also compact that evidently there exist integral 

solutions when 𝐹(⋅,⋅) admits convex values. We do not assume that 𝐹 has convex values and 

prove that the set of mild solutions is dense in the set of limit solutions (a form of Relaxation 

theorem). 

Let 𝑌 ba Banach space with dual 𝑌∗ and let 𝐴 ⊂ 𝑌 be nonempty, closed and bounded. The 

function  

 𝜎(𝑙, 𝐴) = sup
𝑎∈𝐴

〈𝑙, 𝑎〉, 

where 𝑙 ∈ 𝑌∗ is called support function (of 𝐴). 

Let 𝐴, 𝐵 ⊂ 𝑌 the Hausdorff distance between 𝐴 and 𝐵 is defined by  

 𝐷𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥{𝐸𝑥(𝐴, 𝐵), 𝐸𝑥(𝐵, 𝐴)} 

where   𝐸𝑥(𝐴, 𝐵) = sup
𝑏∈𝐵

inf
𝑎∈𝐴

𝑑(𝑎, 𝑏). 

 

Definition 1.1  The multifunction 𝐹: 𝐼 × 𝑌 𝑌→
→  is said to be lower semicontinuous (LSC) if 

for any (𝑡, 𝑦) ∈ 𝐼 × 𝑌, any 𝑣 ∈ 𝐹(𝑡, 𝑦) and any sequence (𝑡𝑛, 𝑦𝑛)𝑛 with 𝑡𝑛 → 𝑡 and 𝑦𝑛 → 𝑦 there 

exists a sequence (𝑣𝑛)𝑛 with (𝑣𝑛) ∈ 𝐹(𝑡𝑛, 𝑦𝑛) such that 𝑣𝑛 → 𝑣. Further 𝐹(⋅,⋅) is continuous if it 

is continuous w.r.t the Hausdorff metric. 

𝐹(⋅,⋅) is called upper hemicontinuous if the support function 𝜎(𝑙, 𝐹(⋅,⋅)) is upper 

semicontinuous as real valued function. 
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The multifunction 𝐹: 𝐼 × 𝑌 𝑌→
→   is said to be almost lower semicontinuous (almost 

continuous, etc) if for any 𝜀 > 0 there exists a compact set 𝐼𝜀 ⊂ 𝐼 with meas(𝐼\𝐼𝜀) < 𝜀 such that 

𝐹(⋅,⋅) is lower smicontinuous (continuous, etc) on 𝐼𝜀 × 𝑌.  

Definition 1.2  Let 𝐸 be a closed subset of 𝑌, 𝑤 be a real number and 𝛥 = {  (𝑡, 𝑠): 0 ≤

𝑠 ≤ 𝑡}. A family of mappings  

 𝐾 = {𝐾(𝑡, 𝑠): 𝐸 → 𝐸  ; 0 ≤ 𝑡 ≤ 𝑠} 

is said to be an evolution operator of type 𝑤 if the following properties are satisfied: 

(i)𝐾(𝑡, 𝑡) = 𝐼 for all 𝑥 ∈ 𝐸 and 𝑡 ≥ 0; 

(ii)𝐾(𝑡, 𝑠)𝐾(𝑠, 𝑟) = 𝐾(𝑡, 𝑟) for all 𝑥 ∈ 𝐸 and 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡; 

(iii) For each 𝑥 ∈ 𝐸, the mapping (𝑡, 𝑠) → 𝐾(𝑡, 𝑠)𝑥 is continuous from Δ into 𝑌; 

(iv) ∥ 𝐾(𝑡, 𝑠)𝑥 − 𝐾(𝑡, 𝑠)𝑦 ∥≤∥ 𝑥 − 𝑦 ∥ 𝑒𝑤(𝑡−𝑠) for all 𝑥, 𝑦 ∈ 𝐸 and 0 ≤ 𝑠 ≤ 𝑡.  

 

For every evolution system, we can consider the respective evolution operator 𝐾: Δ →

ℒ(𝑌), where ℒ(𝑌) is the space of all bounded linear operators in 𝑌. Since the evolution operator 

𝐾 is strongly continuous on the compact set Δ, by the uniform boundedness theorem there exist 

a constant 𝐷 = 𝐷Δ > 0 such that  

 ∥ 𝐾(𝑡, 𝑠) ∥ℒ(𝑌)≤ 𝐷,    (𝑡, 𝑠) ∈ Δ. 

Recall that the evolution operator is said to be compact when 𝐾(𝑡, 𝑠) is a compact operator for 

all 𝑡 − 𝑠 > 0 i.e. 𝐾(𝑡, 𝑠) maps bounded sets into relatively compact sets. 

Definition 1.3  Let 𝑥, 𝑦 ∈ 𝑌, where 𝑌 is a real Banach space with norm ∥⋅∥. The right 

directional derivative of the norm of 𝑥 in the direction 𝑦 is defined as  

 [𝑥, 𝑦]+ = lim
ℎ→0+

∥𝑥+ℎ𝑦∥−∥𝑥∥

ℎ
. 

 It is well known that 

(i) |[𝑥, 𝑦]+ − [𝑥, 𝑧]+| ≤∥ 𝑦 − 𝑧 ∥ 

(ii) [⋅,⋅]+ is upper semicontinuous as a real valued function. 
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2  Limit Solutions 
 

In this section we define the limit solutions of (1.1) introduced in [4] and study their main 

properties. 

Let 𝑌 be a Banach space and 𝐼 = [𝑡0, 𝑇] ⊂ ℝ. We consider (1.1), i.e.  

  

{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝐹(𝑡, 𝑦(𝑡)), 𝑡 ∈ 𝐼

𝑦(𝑡0) = 𝑦0.
 

 Here {𝐴(𝑡)}𝑡∈[𝑡0,𝑇] is a family of densely defined linear operators which generates a strongly 

continuous evolution operator 𝐾: Δ → ℒ(𝑌), and 𝐹: 𝐼 × 𝑌Ã𝑌 is a multivalued map with nonempty 

closed values.  

Definition 2.1  The continuous function 𝑧(⋅) is said to be a (mild) solution of (1.1) if  

 𝑧(𝑡) = 𝐾(𝑡, 𝑡0)𝑦0 + ∫
𝑡

𝑡0
𝐾(𝑡, 𝑠)𝑓𝑧(𝑠)𝑑𝑠, 

where 𝑓𝑧(⋅) is a measurable selection of 𝐹(⋅, 𝑧(⋅)), i.e. 𝑓𝑧(𝑡) ∈ 𝐹(𝑡, 𝑧(𝑡)). 

We will call 𝑓𝑧(⋅) a pseudo derivative of 𝑧(⋅).  

 We will use the following assumptions: 

A1. {𝐴(𝑡)}𝑡∈[𝑡0,𝑇] is the family of densely defined linear operators which generates a 

strongly continuous evolution operator 𝐾: Δ → ℒ(𝑌). 

A2. The operator 𝐾(𝑡, 𝑠) is compact for all 𝑡 > 𝑠. 

F1. 𝐹(⋅,⋅) satisfies a growth condition, i.e. there exist a constant (Lebesgue integrable) 𝐶 

such that|𝐹(𝑡, 𝑦)| ≤ 𝐶(1 + |𝑦|). 

F2. 𝐹(⋅, 𝑦) is measurable. 

 

Definition 2.2  The continuous function 𝑦: 𝐼 → 𝑌 is called 𝜀-solution of (1.1) if it is a 

solution on 𝐼 of the problem  
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{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝐹(𝑡, 𝑦 + 𝜀𝔹),

𝑦(𝑡0) = 𝑦0,    𝑡 ∈ 𝐼.
  (2.1) 

 

Lemma 2.3  Under A1, F1, F2 there exist two constants 𝑀 and 𝑁 such that |𝑦(𝑡)| ≤ 𝑀 

and |𝐹(𝑡, 𝑦(𝑡) + 𝔹)| ≤ 𝑁 − 1 for every solution 𝑦(⋅) of  

 𝑦̇(𝑡) ∈ 𝐴(𝑡)𝑦 + 𝑐𝑜    𝐹(𝑡, 𝑦(𝑡) + 𝔹) + 𝔹. (2.2) 

 

Lemma 2.4  Under A1, F1, F2 for every 𝜀 > 0 there exist 𝜀-solution of (1.1). If A2 also 

hold then the set of all 𝜀-solutions is 𝐶(𝐼, 𝑌) precompact.  

  

Proof. Let 𝑓0(𝑡) ∈ 𝐹(𝑡, 𝑦0) be measurable selection. We define  

 𝑦(𝑡) = 𝐾(𝑡, 𝑡0)𝑦0 + ∫
𝑡

𝑡0
𝐾(𝑡, 𝑠)𝑓0(𝑠)𝑑𝑠,    𝑡 ∈ [𝑡0, 𝑇]. 

We have that  

 |𝑦(𝑡) − 𝑦0| ≤ |𝐾(𝑡, 𝑡0)𝑦0 − 𝑦0| + 𝑀𝑒𝑤(𝑡−𝑡0)𝐶(1 + |𝑦0|)(𝑡 − 𝑡0) (2.3) 

 for any 𝑡 ∈ [𝑡0, 𝑇]. Hence, for every 𝜀 > 0 there exist 𝑡1 > 𝑡0 such that |𝑦(𝑡) − 𝑦0| < 𝜀 for any 

𝑡 ∈ [𝑡0, 𝑡1], i.e.  

 𝐹(𝑡, 𝑦0) ⊂ 𝐹(𝑡, 𝑦(𝑡) + 𝜀𝔹). 

Suppose that the required 𝜀-solution 𝑦(⋅) exists on [𝑡0, 𝜏) with 𝜏 < 𝑇. Due to Lemma 2.3 

lim
𝑡Z𝜏

𝑦(𝑡) = 𝑦𝜏 exist. We study (2.1) on [𝜏, 𝑇] replacing 𝑡0 by 𝜏 and 𝑦0 by 𝑦𝜏. Dealing as before we 

can show that there exist 𝜏1 > 𝜏0 such that  

 𝑦(𝑡) = 𝐾(𝑡, 𝜏)𝑦𝜏 + ∫
𝑡

𝜏
𝐾(𝑡, 𝑠)𝑓𝑦(𝑠)𝑑𝑠,    𝑓𝑦(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡)) 

is 𝜀-solution on [𝜏, 𝜏1]. Using trivial modification of Zorn’s Lemma one can show that 𝑦(⋅) exists 

on [𝑡0, 𝑇]. Let 𝑦(𝜏) = 𝑦𝜏. Replacing 𝑦0 by 𝑦𝜏 and 𝑡0 by 𝜏 in (2.3) we derive  

 |𝑦(𝑡) − 𝑦𝜏| ≤ |𝐾(𝑡, 𝜏)𝑦𝜏 − 𝑦𝜏| + 𝑀𝑒𝑤(𝑡−𝜏)𝐶(1 + |𝑦𝜏|)(𝑡 − 𝜏)). 
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Therefore there exists 𝜀-solution. Let A2 hold. Since 𝐾(𝑡, 𝑠) is strongly continuous and compact, 

one has that it is equicontinuous. If {𝑦𝑛(⋅)}𝑛=1
∞  is a sequence of 𝜀-solutions, then it is 

equicontinuous. Furthermore 𝐾(𝑡, 𝑠)(𝑁𝔹) is precompact and hence Arzela-Ascoli theorem 

applies. Consequently {𝑦𝑛(⋅)}𝑛=1
∞  is precompact and hence the set of 𝜀-solutions is precompact, 

i.e. its closure is 𝐶(𝐼, 𝑌) compact set.  

Remark 2.5  Notice that the conclusion of Lemma 2.4 holds also for 𝜀 = 1. Furthermore 

𝐹(𝑡, 𝑥) + 𝔹 also satisfies the conditions of Lemma 2.3. Therefore the solution set of (2.2) is 

precompact.  

Definition 2.6  The continuous function 𝑦: 𝐼 → 𝑌 is called a limit solution of (1.1) if there 

exist a sequence of positive numbers (𝜀𝑛)𝑛 → 0 and 𝜀𝑛-solution 𝑦𝑛(⋅) such that 𝑙𝑖𝑚𝑛→∞𝑦𝑛(𝑡) =

𝑦(𝑡) uniformly on 𝐼.   

Theorem 2.7  The limit solution set of (1.1) is nonempty and compact.   

Proof. Let {𝑦𝑛(⋅)}𝑛=1
∞  be a sequence of 𝜀𝑛-solutions with 𝜀𝑛 ↓ 0. Clearly every 𝜀𝑛-solutions 

is also 𝜀1-solution (𝜀1 > 𝜀𝑛). From Lemma 2.4 we know that the set of 𝜀1-solutions is precompact 

and hence there exist a uniformly converging subsequence {𝑦𝑛𝑘
}𝑛=1

∞  with limit 𝑦(⋅). This function 

𝑦(⋅) is a limit solution. The set of limit solutions is a subset of the closure of 𝜀1-solutions and hence 

it is a closed subset of a compact set i.e. it is itself compact.  

Recall that 𝑓(𝑡,⋅) is said to be locally Lipschitz if for every 𝑦 ∈ 𝑌 there exist a neighborhood 

𝑈 of 𝑦 and 𝑈 ⊂ 𝑌 such that 𝑓 restricted to 𝐼 × 𝑈 is Lipschitz. 

 

Proposition 2.8  Let 𝑓(⋅,⋅) be Caratheodary with 𝑓(𝑡,⋅) locally Lipschitz. If 𝑓(⋅,⋅) satisfies 

𝐻1 and 𝐴1, then the evolution equation  

  

{
𝑦̇ = 𝐴(𝑡)𝑦 + 𝑓(𝑡, 𝑦(𝑡)),

𝑦(𝑡0) = 𝜂,    𝑡 ∈ 𝐼.
  (2.4) 

 

 has a unique solution 𝑦(⋅, 𝜂), which is defined on 𝐼 and depends continuously on the initial 

condition.  

 

Along with (1.1) we consider the system  
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{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑊(𝑡, 𝑦),

𝑦(𝑡0) = 𝑦0,
  (2.5) 

 

Where 𝑊(𝑡, 𝑦) = ⋂𝜀>0 𝑐𝑜    𝐹(𝑡, 𝑦 + 𝜀𝔹).  

Definition 2.9  Let 𝑌 be a complete metric space. 

(i) A set 𝐴 ⊂ 𝑌 is said to be contractible if there exists a continuous function 𝐻: [0,1] ×

𝐴 → 𝐴 and 𝑦̃ ∈ 𝐴 such that 𝐻(0, 𝑦) = 𝑦 and 𝐻(1, 𝑦) = 𝑦̃ on 𝐴. 

(ii) The set 𝐴 ⊂ 𝑌 is said to be compact 𝑅𝛿 if there exist a decreasing sequence of compact 

contractible sets 𝐴𝑛 such that 𝐴 = ⋂∞
𝑛=1 𝐴𝑛.  

Theorem 2.10  Under the assumptions A1, F1, F2 the limit solution set of (2.5) is 

nonempty 𝑅𝛿 .  

Proof. The proof will be given by locally Lipschitz approximations of 𝑊. Let us denote 𝕃𝕊 

the set of limit solutions of (2.5). Let 𝑟𝑛 =
1

3𝑛 and (𝑉𝜈)𝜈∈ℳ be a locally finite refinement of the 

open covering 𝑌 = ⋃𝑦∈𝑌 (𝑦 + 𝑟𝑛𝔹). Let (𝜓𝜈)𝜈∈ℳ  be a locally Lipschitz partition of unity 

subordinate to (𝑉𝜈)𝜈∈ℳ and take 𝑦𝜈 such that 𝑉𝜈 ⊂ 𝑦𝜈 + 𝑟𝑛𝔹. Consider the approximations  

 𝑊𝑛(𝑡, 𝑦) = ∑𝜈∈ℳ 𝜓𝜈(𝑦)𝐶𝜈(𝑡), 

where 𝐶𝜈(𝑡) = 𝑊(𝑡, 𝑦𝜈 + 2𝑟𝑛𝔹). Then we have that  

 𝑊(𝑡, 𝑦) ⊂ 𝑊𝑛+1(𝑡, 𝑦) ⊂ 𝑊𝑛(𝑡, 𝑦) ⊂ 𝑊(𝑡, 𝑦 + 3𝑟𝑛𝔹)    𝑜𝑛  𝐼 × 𝑌 (2.6) 

 Denote by 𝑆𝑛 the mild solution of    

  

{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑊𝑛(𝑡, 𝑦),

𝑦(𝑡0) = 𝑦0,
  (2.7) 
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By (2.6) we have 𝑆𝑛+1 ⊂ 𝑆𝑛. Moreover, the solution set 𝑆𝑛 is compact for every 𝑛 with 𝑟𝑛 <
1

3
. We 

shall prove that 𝑆𝑛 is contractible. Let 𝑓𝜈 be a measurable selection of 𝐹(⋅, 𝑦𝜈) for every 𝜈 ∈ ℳ. 

We define  

 𝑓(𝑡, 𝑦) = ∑𝜈∈ℳ 𝜓𝜈(𝑦)𝑓𝜈(𝑡)  𝑜𝑛  𝐼 × 𝑌. 

Since for a.e. 𝑡 ∈ 𝐼, 𝑓𝜈 ∈ 𝐹(𝑡, 𝑦𝜈) ⊂ 𝐶𝜈(𝑡), we have that 𝑓(𝑡, 𝑦) ∈ 𝑊𝑛(𝑡, 𝑦) for a.e. 𝑡 ∈ 𝐼 and 𝑦 ∈

𝑌. Since (𝑉𝜈)𝜈 ∈ ℳ is locally finite we have 𝑓(⋅, 𝑦) is measurable and 𝑓(𝑡,⋅) is locally Lipschitz. 

Due to Proposition 2.8 the equation  

 (
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑓(𝑡, 𝑦(𝑡)), 𝑡 ∈ [𝑠, 𝑇]
𝑦(𝑠) = 𝜌,

 (2.8) 

has a unique solution 𝑦̃(⋅, 𝑠, 𝜌) which depend continuously on 𝜌. Take 𝜏 ∈ [0,1] and denote 

 𝑏𝜏 = 𝜏(𝑇 − 𝑡0) + 𝑡0. We define the homotopy 𝐻: [0,1] × 𝑆𝑛 → 𝑆𝑛 as  

 𝐻(𝜏, 𝑣)(𝑡) = (
𝑣(𝑡),  𝑡 ∈ [𝑡0, 𝑏𝜏]
𝑦̃(𝑡; 𝑏𝜏, 𝑣(𝑏𝜏)),  𝑡 ∈ (𝑏𝜏, 𝑇]

 

Let 𝑢(⋅), 𝑣(⋅) ∈ 𝑆𝑛 and let  

 𝑧̇ = 𝐴(𝑡)𝑧 + 𝑓(𝑡, 𝑧(𝑡)),    𝑧(𝑠) = 𝑢(𝑠) 

 𝑦̇ = 𝐴(𝑡)𝑦 + 𝑓(𝑡, 𝑦(𝑡)),    𝑦(𝜏) = 𝑢(𝜏). 

 

Suppose 𝜏 > 𝑠. Then  

 𝑧(𝜏) = 𝐾(𝜏, 𝑠)𝑢(𝑠) + ∫
𝑠

𝜏
𝐾(𝜏, 𝜇)𝑓(𝜇, 𝑧(𝜇))𝑑𝜇. 

Thus  

 𝑧(𝑡) = 𝐾(𝑡, 𝜏)𝑧(𝜏) + ∫
𝑡

𝜏
𝐾(𝑡, 𝜇)𝑓(𝜇, 𝑧(𝜇))𝑑𝜇. 

Consequently  

 𝑦(𝑡) − 𝑧(𝑡) = 𝐾(𝑡, 𝜏)(𝑦(𝜏) − 𝑧(𝜏)) + ∫
𝑡

𝜏
𝐾(𝑡, 𝜇)[𝑓(𝜇, 𝑦(𝜇)) − 𝑓(𝜇, 𝑧(𝜇))]𝑑𝜇, 

i.e.  

 |𝑦(𝑡) − 𝑧(𝑡)| ≤ |𝐾(𝑡, 𝜏)(𝑦(𝜏) − 𝑧(𝜏))| + ∫
𝑡

𝜏
𝐾(𝑡, 𝜇)𝑙(𝜇)|𝑦(𝜇) − 𝑧(𝜇)|𝑑𝜇. 
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Assume that |𝑢(𝑡) − 𝑣(𝑡)| ≤ 𝜀. Fix 𝛿 > 0 and |𝜏 − 𝑠| so small that |𝑢(𝜏) − 𝑢(𝑠)| < 𝛿 and 

|𝐾(𝑡, 𝑠)𝑢(𝜉) − 𝐾(𝜏, 𝜏)| < 𝛿 for any |𝜉| ≤ 𝑀 and 𝑁𝐷(𝑡 − 𝑠) < 𝛿. 

Consequently  

 |𝑧(𝜏) − 𝑣(𝜏)| ≤ |𝑣(𝜏) − 𝑣(𝑠)| + |𝑧(𝜏) − 𝑧(𝑠)| 

 

 ≤ 𝛿 + |𝐾(𝜏, 𝑠)𝑢(𝑠)𝐾(𝜏, 𝜏)𝑢(𝑠)| + | ∫
𝜏

𝑠
𝐾(𝜏, 𝜇)𝑓(𝜇, 𝑦(𝜇))𝑑𝜇 

 

 ≤ 𝛿 + 𝛿 + 𝐷. 𝑀(𝑡 − 𝑠) ≤ 3𝛿. 

Let |𝑢(𝑠) − 𝑣(𝑠)| ≤ 𝜀    ∀𝑠 ∈ [𝑡0, 𝑇], then  

 |𝑦(𝜏) − 𝑧(𝜏)| ≤ |𝑢(𝑠) − 𝑣(𝑠)| + |𝑦(𝜏) − 𝑢(𝑠)| + |𝑧(𝜏) − 𝑧(𝑠)| 

 ≤ 𝜀 + 4𝛿. 

 

Consequently  

 |𝑦(𝑡) − 𝑧(𝑡)| ≤ |𝐾(𝑡, 𝜏)||𝑦(𝜏) − 𝑧(𝜏)| + ∫
𝑡

𝜏
|𝐾(𝑡, 𝑠)|𝑙(𝑠)|𝑦(𝑠) − 𝑧(𝑠)|𝑑𝑠, 

i.e.  

 |𝑦(𝑡) − 𝑧(𝑡)| ≤ 𝐷(𝜀 + 4𝛿) + 𝐷 ∫
𝑡

𝜏
𝑙(𝑠)|𝑦(𝑠) − 𝑧(𝑠)|𝑑𝑠. 

Thus |𝑢(𝑡) − 𝑧(𝑡)| ≤ 𝑟(𝑡), where 𝑟(𝑡) = 𝐷(𝜀 + 4𝛿) + 𝐷 ∫
𝑡

𝜏
𝑙(𝑠)𝑟(𝑠)𝑑𝑠. Gronwall’s inequality 

then applies and hence 𝐻(⋅,⋅) is continuous map from [0,1] × 𝑆𝑛 → 𝑆𝑛. Furthermore 𝐻(0, 𝑣) = 𝑦̃ 

and 𝐻(1, 𝑣) = 𝑣. So, we find a decreasing sequence of compact contractible sets (𝑆𝑛)𝑛 ⊂ 𝐶(𝐼, 𝑌). 

By Definition 2.9, we have to only show that  

 𝕃𝕊 = ⋂∞
𝑛=1 𝑆𝑛. 

Notice that 𝕃𝕊 ⊂ 𝑆𝑛 for any 𝑛 ∈ ℕ. Let 𝑦 ∈ 𝕃𝕊 and fix 𝑛. Then, there exist a decreasing (𝜀𝑚)𝑚 ↓

0 and (𝑦𝑚)𝑚 a sequence of 𝜀𝑚-solution for (2.5) such that 𝑦𝑚 → 𝑦. Let 𝑚𝑛 be such that 𝜀𝑚𝑛
< 𝑟𝑛. 

For any 𝑚 ≥ 𝑚𝑛 we have  

 𝑊(𝑡, 𝑦𝑚(𝑡) + 𝜀𝑚𝔹) ⊂ 𝑊(𝑡, 𝑦𝑚(𝑡) + 𝑟𝑛𝔹) ⊂ 𝑊𝑛(𝑡, 𝑦𝑚(𝑡)), 
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because, if 𝜓𝜈(𝑦𝑚(𝑡)) > 0, then 𝑦𝑚(𝑡) ∈ 𝑉𝜈 ⊂ 𝑦𝜈 + 𝑟𝑛𝔹. Hence, 𝑦𝑚 ∈ 𝑆𝑛, for any 𝑚 ≥ 𝑚𝑛. Now, 

let 𝑠 ∈ ⋂∞
𝑛=1 𝑆𝑛 so 𝑠 ∈ 𝑆𝑛, for any 𝑛. Then for any 𝑛 there exist a sequence (𝑧𝑛

𝑚)𝑚 ⊂ 𝑆𝑛 such that 

𝑧𝑚
𝑛 → 𝑠(𝑡) uniformly when 𝑚 → ∞. By (2.6) 𝑧𝑚

𝑛  is a solution of  

 𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑊(𝑡, 𝑦 + 3𝑟𝑛𝔹). 𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑊(𝑡, 𝑦 + 3𝑟𝑛𝔹). 

Thus 𝑧𝑚
𝑛  is 𝜀𝑛 = 3𝑟𝑛-solution for 𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑊(𝑡, 𝑦). Let 𝑠𝑛 = 𝑧𝑛

𝑛. Then 𝑠𝑛 is 𝜀𝑛-solution of 𝑦̇ ∈

𝐴(𝑡) + 𝑊(𝑡, 𝑦) and 𝑠𝑛(𝑡) → 𝑠(𝑡) uniformly on 𝐼 as 𝑛 → ∞, i.e. , 𝑠 is a limit solution for 𝑦̇ ∈

𝐴(𝑡)𝑦 + 𝑊(𝑡, 𝑦).  

 

Proposition 2.11  Let A1, F1, F2 hold true. If 𝐹(⋅,⋅) is (jointly) ℒ ⊗ ℬ (Lebesgue, Borel) 

measurable then for any 𝜀 > 0 and every 𝛿 > 0 the solution set of  

   

  

{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑐𝑜    𝐹(𝑡, 𝑦 + 𝜀𝔹),

𝑦(𝑡0) = 𝑦0
  (2.9) 

 

is contained in the closure of the (𝜀 + 𝛿)-solution set of (1.1).  

  

Proof. Let 𝑦(⋅) be a solution of (2.9) with pseudo derivative 𝑓𝑦(⋅). That is  

 𝑦(𝑡) = 𝐾(𝑡, 𝑡0)𝑦0 + ∫
𝑡

𝑡0
𝐾(𝑡, 𝑠)𝑓𝑦(𝑠)𝑑𝑠. 

Furthermore, for any 𝑡0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇 one has that  

 𝑦(𝑡) = 𝐾(𝑡, 𝜏)𝑦(𝜏) + ∫
𝑡

𝜏
𝐾(𝑡, 𝑠)𝑓𝑦(𝑠)𝑑𝑠. 

Since 𝐹(⋅,⋅) is measurable and 𝑦(⋅) is continuous one has that 𝑡 → 𝐹(𝑡, 𝑦(𝑡) + 𝜀𝔹) is measurable.  

 ∫
𝑡

𝜏
𝐾(𝑡, 𝑠)𝑐𝑜    𝐹(𝑠, 𝑦(𝑠) + 𝜀𝔹)𝑑𝑠 = ∫

𝑡

𝜏
𝐾(𝑡, 𝑠)𝐹(𝑠, 𝑦(𝑠) + 𝜀𝔹)𝑑𝑠. 

Fix 𝜈 > 0. The solution set of (2.9) is equicontinuous, i.e. there exists a uniform subdivision  

 𝑡0 < 𝑡1 <. . . . < 𝑡𝑘 <. . . . . < 𝑡𝑛 < 𝑡𝑛+1 = 𝑇 
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such that |𝑦(𝑡) − 𝑦(𝜏)| <
𝜈

5
    ∀𝑡, 𝑠 ∈ [𝑡𝑘, 𝑡𝑘+1],    𝑘 = 0,1,2,3. . . . . 𝑛. Clearly for any [𝑡𝑘, 𝑡𝑘+1] 

there exist a measurable selection 𝑓𝑧(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡) + 𝜀𝔹) such that  

 |∫
𝑡𝑘+1

𝑡𝑘
𝐾(𝑡𝑘+1, 𝑠)|𝑓𝑦(𝑠) − 𝑓𝑥(𝑠)|𝑑𝑠| <

𝜈

𝑛+1
. | ∫

𝑡𝑘+1

𝑡𝑘
𝐾(𝑡𝑘+1, 𝑠)[𝑓𝑦(𝑠) − 𝑓𝑧(𝑠)]𝑑𝑠| <

𝜈

5(𝑛+1)
. 

Define  

 𝑧(𝑡) = 𝐾(𝑡, 𝑡0)𝑦0 + ∫
𝑡

𝑡0
𝑓𝑧(𝑠)𝑑𝑠. 

Consequently  

 |𝑦(𝑡) − 𝑧(𝑡)| < |𝑦(𝑡𝑘) − 𝑧(𝑡𝑘)| + |𝑦(𝑡) − 𝑦(𝑡𝑘)| + |𝑧(𝑡) − 𝑧(𝑡𝑘)| 

 

 ≤
𝜈

5(𝑛+1)
(𝑛 + 1) +

𝜈

5
+

𝜈

5
≤ 𝜈, 

i.e. |𝑦(𝑡) − 𝑧(𝑡)| ≤ 𝜈 and hence 𝑦(⋅) is (𝜀 + 𝜈)-solution for which |𝑦(𝑡) − 𝑧(𝑡)| < 𝜈. Taking 𝜈 <

𝛿 we have that for any 𝛿 and any 𝜈 there exists (𝜀 + 𝛿)-solution 𝑧(⋅) with |𝑦(𝑡) − 𝑧(𝑡)| < 𝜈.  

 Consider the so called relaxed system  

   

  

{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝑐𝑜    𝐹(𝑡, 𝑦(𝑡)),

𝑦(𝑡0) = 𝑦0.
  (2.10) 

 

The 𝜀-solutions and limit solutions are defined analogously. 

It follows from Proposition 2.11 that under A1, F1, F2 the set of limit solutions of (1.1) and 

(2.10) coincide. 

 

 

3  One Sided Perron Evolution Inclusion 
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In this chapter we introduce OSP condition and prove a variant of the lemma of Filippov–

Pliss and a variant of the relaxation theorem. 

 

Definition 3.1  A function 𝑤: 𝐼 × ℝ+ → ℝ+ is said to be Perron function if it is 

Caratheodory (measurable on 𝑡 and continuous on the state variable), integrally bounded on the 

bounded sets, 𝑤(𝑡, 0) = 0 and the unique solution of the problem  𝑟̇(𝑡) = 𝑤(𝑡, 𝑟(𝑡)), 𝑟(𝑡0) = 0 

is 𝑟(𝑡) = 0. 

The multifunction 𝐹: 𝐼 × 𝑌 𝑌→
→   is called one-sided Perron (with respect to Perron function 

𝑤) if for every 𝑦1, 𝑦2 ∈ 𝑌, a.e. 𝑡 ∈ 𝐼 and every 𝑓 ∈ 𝐹(𝑡, 𝑦1) there exist 𝑔 ∈ 𝐹(𝑡, 𝑦2) such that 

 

 [𝑦1 − 𝑦2, 𝑓 − 𝑔]+ ≤ 𝑤(𝑡, ∥ 𝑦1 − 𝑦2 ∥) 

.  

 In this section we study the problem (1.1) when 𝐹(𝑡,⋅) is one sided Perron (OSP). First we 

prove variant the well known Lemma of Fillipov-Pliss. Afterward we prove the existence of 

solutions for almost lower semicontinuous case and the relaxation theorem. Finally we prove the 

existence of limit solutions in case of OSP multifunction 𝐹(𝑡,⋅) when 𝐴(𝑡) generates not 

necessarily compact evolution operator. We assume further in this section that 𝐹(⋅,⋅) is almost 

continuous.  

Theorem 3.2  Let A1, A2, F1, F2 holds. If 𝐹(⋅,⋅) is almost LSC with nonempty closed 

valued, then the set of (mild) solutions of (1.1) is nonempty and 𝐶(𝐼, 𝑌) precompact.  

  

Proof. Consider the following evolution inclusion 

   

  

{
𝑧̇ ∈ 𝐴(𝑡)𝑧 + 𝑁. 𝔹,

𝑧(𝑡0) = 𝑦0
  (3.1) 

 

Using the same method as in the proof of Lemma 2.4 one can show that its solution set 𝑆𝑜𝑙(𝑁𝔹) 

is 𝐶(𝐼, 𝑌) precompact. Denote 𝐶𝑘 = 𝑐𝑜    𝑆𝑜𝑙(𝑁𝔹). Now we define the operator  
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 ℒ(𝑦(⋅)) = {𝑓(⋅): 𝑓(𝑦) ∈ 𝐹(𝑡, 𝑦(𝑡))   𝑖𝑠  𝑚𝑒𝑎𝑠𝑢𝑎𝑟𝑎𝑏𝑙𝑒 }. 

Clearly ℒ maps 𝐶𝑘 into 𝐿1(𝐼, 𝑌). Since 𝐹(⋅,⋅) is almost USC, one has that ℒ(⋅) is with nonempty 

closed values. Then it is easy to show , using Theorem 4.1 of [13] that ℒ(⋅) is LSC. Due to Bressan-

Colombo’s Theorem [3] there exists a selection 𝑃(𝑧) ∈ ℒ(𝑧), which is a continuous map from 𝐶𝑘 

into 𝐿1(𝐼, 𝑌). Denote 𝑃(𝑤(⋅)) the solution of    

  

{
𝑧̇ = 𝐴(𝑡)𝑧 + 𝑃(𝑤)(𝑡),

𝑧(𝑡0) = 𝑦0
  (3.2) 

 

Clearly 𝑃(𝑝(⋅)) is continuous map from 𝐶𝑘 into 𝐶𝑘. Due to Schauder’s fixed point theorem there 

exists a fixed point 𝑧(⋅), i.e;  

 𝑧(𝑡) = 𝐾(𝑡, 𝑡0)𝑦0 + ∫
𝑡

𝑡0
𝐾(𝑡, 𝑠)𝑃(𝑧)(𝑠)𝑑𝑠. 

Since ∥ 𝐹(𝑡, 𝑦) ∥≤ 𝑁, one has that 𝑃(𝑧)(𝑠) ∈ 𝐹(𝑠, 𝑧(𝑠)) and hence 𝑧(⋅) is a mild solution of (1.1).  

  

Definition 3.3 The continuous function 𝑦(⋅) is said to be outer 𝜀-solution if  

 𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝐹(𝑡, 𝑦(𝑡)) + 𝑔𝜀(𝑡)𝔹, 

where 𝑔𝜀(𝑡) ≥ 0 with ∫
𝐼

𝑔𝜀(𝑡)𝑑𝑡 ≤ 𝜀.  

 Due to growth condition and Lemma 2.3 we can assume that |𝑔𝜀(𝑡)| ≤ 𝑁. Let 𝐹(⋅,⋅) be 

almost continuous. The following result then holds.  

Theorem 3.4  Under F1, F2 and A2, for every 𝜀 > 0 there exist 𝛿(𝜀) > 0 such that if 𝑦(⋅) 

is a 𝛿-solution of (1.1) then it is an outer 𝜀-solution of (1.1). Furthermore if 𝛿(𝜀) → 0 ⇒ 𝜀 → 0.  

  

 

 

Proof. The solution set of  
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{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝐹(𝑡, 𝑦 + 𝔹) + 𝔹,

𝑦(𝑡0) = 𝑦0
  (3.3) 

 

 is 𝐶(𝐼, 𝑌) precompact (cf. Remark 2.5). Thus the reachable set of (3.3) at the time 𝑡 𝑅𝑒𝑎𝑐ℎ(𝑡) is 

also precompact and hence Ω = ⋃𝑡∈[𝑡0,𝑇] 𝑅𝑒𝑎𝑐ℎ(𝑡) is compact. Since 𝐹(⋅,⋅) is almost continuous 

⇒ ∀𝜐 > 0 there exist compact 𝐼𝜐 ⊂ 𝐼 with meas(𝐼𝜐) > (𝑇 − 𝑡0) − 𝜐 such that 𝐹(⋅,⋅) is continuous 

and hence uniformly continuous on 𝐼𝜐 × Ω. Fix 𝜀 > 0. Thus there exist 𝛿 > 0 such that  

 𝐷𝐻(𝐹(𝑡, 𝑥), 𝐹(𝑡, (𝑥 + 𝛿𝔹) ∩ Ω) ≤
𝜀

(2(𝑇−𝑡0)+1)
. 

Let 𝑧(⋅) be 𝛿-solution  

 𝑧̇ ∈ 𝐴(𝑡)𝑧 + 𝐹(𝑡, 𝑦(𝑡) + 𝛿𝔹), 

 

 ⇒ 𝑧̇ = 𝐴(𝑡)𝑧 + 𝑓𝑧(𝑡),    𝑓𝑧(𝑡) ∈ 𝐹(𝑡, 𝑧(𝑡) + 𝛿𝔹) 

 

 ⇒ 𝑓𝑧(𝑡) ∈ 𝐹(𝑡, 𝑧(𝑡)) +
𝜀

(2(𝑇−𝑡0)+1)
 

on 𝐼𝜐 × 𝑌 and ∥ 𝑓𝑧(𝑡) ∥≤ 𝜇 on 𝐼𝜐. Further  

 ∫
𝐼

𝑑𝑖𝑠𝑡(𝑓𝑧(𝑡), 𝐹(𝑡, 𝑦(𝑡))𝑑𝑡 ≤ 2𝜇𝜐 +
𝜀

2(𝑇−𝑡0)+1)
(𝑇 − 𝑡0). 

Hence 𝑦(⋅) is outer 𝜀-solution when  

 2𝜇𝜐 +
𝜀

2(𝑇−𝑡0)+1)
(𝑇 − 𝑡0) ≤ 𝜀. 

 

  

Lemma 3.5  Assume F1, F2, A2 holds. Moreover, suppose that 𝐹(𝑡,⋅) is one-sided Perron 

with respect to Perron function 𝑤(⋅,⋅). Let ℎ: 𝐼 → ℝ+ be a Lebesgue integrable function. If 𝑦(⋅) is 

a solution of    
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{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝐹(𝑡, 𝑦(𝑡)) + ℎ(𝑡)𝔹,

𝑦(𝑡0) = 𝑦0,
  (3.4) 

 

then, for every 𝛿 > 0 there exist a solution 𝑧(𝑡) of (1.1) such that  

 |𝑧(𝑡) − 𝑦(𝑡)| < 𝑟(𝑡), 

where 𝑟(⋅) is the maximal solution of  

  

  

{
𝑟̇ = 𝑤(𝑡, 𝑟(𝑡)) + ℎ(𝑡) + 𝛿,

𝑟(𝑡0) = |𝑧0 − 𝑦0|.
  (3.5) 

 

Proof. Clearly, 𝑦(⋅) is given by  

 𝑦(𝑡) = 𝐾(𝑡, 𝑡0)𝑦0 + ∫
𝑡

𝑡0
𝐾(𝑡, 𝑠)(𝑓𝑦(𝑠) + 𝑔𝑦(𝑠))𝑑𝑠, 

where 𝑓𝑦(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡)) and 𝑔𝑦(𝑡) ∈ ℎ(𝑡)𝔹 for a.a. 𝑡 ∈ [𝑡0, 𝑇]. Fix 𝛿 > 0 and define  

 𝐹𝛿(𝑡, 𝑢) = {𝑣 ∈ 𝐹(𝑡, 𝑢);     [𝑦(𝑡) − 𝑢, 𝑓𝑦(𝑡) − 𝑣]+ < 𝑤(𝑡, |𝑦(𝑡) − 𝑢|) + 𝛿}. 

The multifunction 𝐹𝛿 has nonempty values since 𝐹(𝑡,⋅) is One-sided Perron. We shall prove that 

𝐹𝛿 is almost lower semicontinuous. It is enough to show that  

 𝐹̃𝛿(𝑡, 𝑢) = {𝑣 ∈ 𝐹(𝑡, 𝑢);     [𝑦(𝑡) − 𝑢, 𝑓𝑦(𝑡) − 𝑣]+ < 𝑤(𝑡, |𝑦(𝑡) − 𝑢|) + 𝛿} 

is almost lower semicontinuous. From the almost lower semicontinuity of 𝐹 and Lusin’s property 

of 𝑓𝑦(⋅), we have that for every 𝜀 > 0 there exist a compact set 𝐼𝜀 ⊂ 𝐼 with meas(𝐼\𝐼𝜀) < 𝜀 such 

that 𝐹(⋅,⋅) is lower semicontinuous on 𝐼𝜀 × 𝑌, 𝑤(⋅,⋅) is continuous on 𝐼𝜀 × 𝑌 and 𝑓𝑦(⋅) is 

continuous on 𝐼𝜀. Therefore it remains to show that 𝐹̃𝛿 is lower semicontinuous on 𝐼𝜀 × 𝑌. Let 

(𝑡, 𝑢) ∈ 𝐼𝜀 × 𝑌, 𝑙 ∈ 𝐹̃𝛿(𝑡, 𝑢) and let the sequence (𝑡𝑛, 𝑢𝑛)𝑛 ⊂ 𝐼𝜀 × 𝑌. There exist 𝜂 > 0 such that  

 [𝑦(𝑡) − 𝑢, 𝑓𝑦(𝑡) − 𝑙]+ ≤ 𝑤(𝑡, |𝑦(𝑡) − 𝑢|) + 𝛿 − 𝜂. (3.6) 

 Since 𝐹 is lower semicontinuous at (𝑡, 𝑢), one has that there exist a sequence (𝑙𝑛)𝑛 with 𝑙𝑛 ∈

𝐹(𝑡𝑛, 𝑢𝑛) such that 𝑙𝑛 → 𝑙. Since 𝑓𝑦 is continuous and [⋅,⋅]+ is upper semicontinuous, then  
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 [𝑦(𝑡𝑛) − 𝑢𝑛, 𝑓 − 𝑦(𝑡𝑛) − 𝑙𝑛]+ ≤ [𝑦(𝑡) − 𝑢, 𝑓𝑦(𝑡) − 𝑙]+ + 𝜂/2 (3.7) 

 for 𝑛 large enough. Furthermore, 𝑤(⋅,⋅) is continuous and hence  

 𝑤(𝑡, |𝑦(𝑡) − 𝑢|) ≤ 𝑤(𝑡𝑛, |𝑦(𝑡𝑛) − 𝑢𝑛|) + 𝜂/2 (3.8) 

 for 𝑛 large enough. It follows from (3.6), (3.7) and (3.8) that 𝑙𝑛 ∈ 𝐹̃𝛿(𝑡𝑛, 𝑢𝑛) for 𝑛 large enough. 

Thus 𝐹̃𝛿 is almost lower semicontinuous and hence 𝐹𝛿(⋅,⋅) is also almost LSC. From Theorem 3.2 

we know that the differential inclusion    

 

{
𝑦̇ ∈ 𝐴(𝑡)𝑦 + 𝐹𝛿(𝑡, 𝑦(𝑡)),

𝑦(𝑡0) = 𝑦0,
  (3.9) 

 

 has a solution 𝑦(⋅) defined on [𝑡0, 𝑇] and given by  

 𝑦(𝑡) = 𝐾(𝑡, 𝑡0)𝑦0 + ∫
𝑡

𝑡0
𝐾(𝑡, 𝑠)𝑓𝑦(𝑠)𝑑𝑠, (3.10) 

 where 𝑓𝑦(𝑡) ∈ 𝐹𝛿(𝑡, 𝑦(𝑡)) for a.a. 𝑡 ∈ [𝑡0, 𝑇]. Using the properties of [⋅,⋅]+ it is easy to show that  

 [𝑦(𝑡) − 𝑧(𝑡), 𝑓𝑦(𝑡) + 𝑔𝑦(𝑡) − 𝑓𝑧(𝑡)]+ ≤ 𝑤(𝑡, |𝑦(𝑡) − 𝑧(𝑡)|) + ℎ(𝑡) + 𝛿, 

for a.a. 𝑡 ∈ [𝑡0, 𝑇]. Since  

 |𝑦(𝑡) − 𝑧(𝑡)| ≤ |𝑦0 − 𝑧0| + ∫
𝑡

𝑡0
[𝑦(𝑠) − 𝑧(𝑠), 𝑓𝑦(𝑠) + 𝑔𝑦(𝑠) − 𝑓𝑧(𝑠)]+𝑑𝑠 

for every 𝑡 ∈ [𝑡0, 𝑇], one has that  

 |𝑦(𝑡) − 𝑧(𝑡)| ≤ |𝑦0 − 𝑧0| + ∫
𝑡

𝑡0
𝑤(𝑠, |𝑦(𝑠) − 𝑧(𝑠)|)𝑑𝑠 + ∫

𝑡

𝑡0
ℎ(𝑠)𝑑𝑠 + 𝛿𝑡, 

for every 𝑡 ∈ [𝑡0, 𝑇]. Therefore we obtain that  

 |𝑦(𝑡) − 𝑧(𝑡)| ≤ 𝑟(𝑡) 

for any 𝑡 ∈ [𝑡0, 𝑇], where 𝑟(⋅) is the maximal solution of (3.5).  

  

Theorem 3.6  Assume F1, F2 and A2. Moreover, suppose that 𝐹(𝑡,⋅) is one sided Perron 

w.r.t the Perron function 𝑤(⋅,⋅). Then the solution set of (1.1) is dense in the limit solution set of 

(2.10).  
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Proof. Let 𝑦(⋅) be a limit solution of (2.10). Thus ∀𝛿 > 0 there exist 
𝛿

2
-solution 𝑧𝛿(⋅) such 

that  

 ∥ 𝑦(𝑡) − 𝑧𝛿(𝑡) ∥≤
𝛿

2
    ∀𝑡 ∈ 𝐼. 

Hence there exists 𝛿-solution 𝑧(⋅) of (1.1) such that  

 ∥ 𝑧(𝑡) − 𝑧𝛿(𝑡) ∥≤
𝛿

2
 

and hence ∥ 𝑦(𝑡) − 𝑧(𝑡) ∥≤ 𝛿. Let 𝜀 > 0. Then one can prove that 𝛿 = 𝛿(𝜀) is such that 𝑧(⋅) is 

outer 𝜀-solution i.e. there exist ℎ(⋅) with  

 ∫
𝑇

𝑡0
ℎ(𝑡)𝑑𝑡 ≤ 𝜀. 

Due to the Lemma of Fillipovo-Pliss there exists a solution 𝜒(⋅) of such that  

 ∥ 𝑧(𝑡) − 𝜒(𝑡) ∥≤ 𝑟(𝑡), 

where  

 

{
𝑟̇ = 𝑤(𝑡, 𝑟(𝑡)) + ℎ(𝑡) +

𝛿

2
,

𝑟(𝑡0) = |𝑦0 − 𝜒0|.
  (3.11) 

Consequently  

 ∥ 𝑦(𝑡) − 𝜒(𝑡) ∥≤ 𝑟(𝑡) +
3𝛿

2
. 

The proof is complete, because 𝑤(⋅,⋅) is a Perron function.  
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