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Abstract 
In this paper we consider a mathematical model of the diffusion process for nonmetal 
materials immersed into liquids. A method for determination of the diffusion 
coefficient characterizing the evolution process of liquid penetration into the non 
metal body is established. A practical example illustrating the method is considered. 
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1 Introduction.  

In this paper the authors investigate the diffusion problem connected with the penetration of any 
fluid in nonmetal cylindrical body  , a vulkanizat, with a boundary ,  whose length L exceeds 

many times its diameter d. Similar problems are considered in the illustrious monograph of Krank, 
[7]. We consider the initial and boundary value problem (IBVP for short) with Dirichlet boundary 
condition, 
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where (I) and (B) are initial and boundary data, respectively, and C is the concentration of the 

penetrating liquid in the cylindrical body; (0, ] ;J T      is the Laplace operator. Here  accept 

the notations 2 2 2,t t xx yy zz

C
C

t


       


; note that is possible T   . The diffusion 

equation (1) as it is known is a parabolic PDE. We prefer to represent it further in cylindrical 
variables under very simple initial and boundary data. As we mentioned above the cylindrical 
body, that is a rod, is made of nonmetal material, which is actually immersed into an aggressive 
liquid. This diffusion problem may encounter everywhere in the practice, [1], [8-11]. Also it is 
known that the molecules of the liquid penetrate into the cylinder as the evolution process starts 
at the initial moment t = 0, and continue to the final point of the fixed interval J = [0; T] (T > 0). 
The IBVP is well learned, [5,6], but the calculation of diffusion coefficient D used in the diffusion 
equation turns out a difficult task which motivate us to offer a practical approach of computation 
of D. We establish a practical method to assessment of the diffusion coefficient D as for this 
purpose use the solution of the IBVP that is a function expressed by Bessel functions, [2-7]. Thus 
the solution is the map ( , )u u   , where the variable   and  are linear functions of time t and 

radial variable r, respectively, and u  is a linear function of the real concentration C. Therefore we 
have three variables which do not depend on their physical measures, moreover, the triple 
( , , )u   sweeps the set [0,1] [0,1] [0,1]  . Taking into account the graph 

 ( , , ) : 0 , , 1; ( , )u u u u u           of the function ( , )u u   , that is the solution of the 

considered IBVP, and measuring the distribution of liquid’s concentration in radial direction of 
the considered rod, then after simple computing obtain the coefficient of diffusion D. The 
advantage of this method is that one may assess the diffusion coefficient D to any unknown 
diffusion process concerning nonmetal materials immersed in any liquid independently of the 
interior structure of the material. The problem (1) is well learned, [6,7], but the calculation of D 
turns out that is a difficult task which motivate us to offer a practical approach of computation of 
D. More intricate mathematical models describing the diffusion processes with nonlinear reaction 
functions can be found in [8-11]. Finally, conclude that almost the same method can be used for 
nonlinear diffusion problems. 

2 Preliminaries and assessment of diffusion coefficient. 

Consider the classical IBVP (1) with initial and boundary data (I) and (B), respectively. Here C is 
the concentration of the penetrating liquid in the cylindrical body, which is an unknown function, 

3  is a bounded domain with sufficiently smooth boundary , and the initial and boundary 

functions 0C  and 1C , respectively, are sufficiently smooth as well. The main object under 

consideration is a set having cylindrical shape (rod) denoted by   immersed into a liquid. It is 
known that the molecules of the liquid penetrate into the cylinder as the evolution process starts 
at the initial moment t = 0 and continue to the end of a fixed interval J = [0; T].  

Assume that  the cylinder has radius r = a  and length L  > > a. Taking into account that   is a 
cylinder therefore we introduce in (1) cylindrical coordinates as for this purpose introduce the 
radial variables r,   (polar angle), and z-coordinte, that is, from (t; x; y; z) get to (t;r) due to the 
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axial symmetry of the cylindrical domain  . Thus from IBVP (1) obtain the following one-
dimensional IBVP with proper initial and boundary conditions: 

 

1
, 0 , 0 ,

0, 0, , 0 ,

( ), 0 , 0.

t r rrC D C C r a t T
r
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 

    

   

                                       (2) 

 

Here we are interested in the analytical solution of (2). It is known that it can be represented by 
a functional series containing the known Bessel functions: 
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Here 
0 1( ), ( )J x J x  are the Bessel functions of the first kind, and of the zero and first order, 

respectively; the numbers ka  are roots of 0J , i.e. 
0( ) 0 ( 1,2, )kJ a k    (see e.g., [2], [3], [5-

7]). Obviously the unknown function C(t,r) is differentiable infinitely many times. Furthermore, 

consider the inhomogeneous Dirichlet problem (2) under the boundary condition 1|C C , for 

0r  and ( 0),r a t   and the initial condition 0C C  for 0 0, 0,r t   where 0 1,C C are 

some real constants. Next in order to make the problem independent of the physical 
measurement we introduce in (2) certain dimensionless variables instead C, r, and t as for this 
purpose set 

 

1 0 0( )C C C u C   , 
2

D
t

a
  , 

1
r

a
  , 

 

whence obtain the transformation formulae for the differential operators 

 

2 2

2 2 2
, ,t rr

D D D

a a a
            . 

 

The new IBVP in the new variables , ,u  has the form 
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21
, 0 1, 0 1,
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Therefore the solution of (4) takes the form: 

2 2
0 0

11 0 1

( )2
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( )
k a k

k k k

C C J a
u e

C C a J a
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We observe that the quantity 0

1 0

C C
u

C C





  ( 1 0C C )  is dimensionless, and taking into account 

the known fact that only the first four summands in the series (5) have essential contribution to 
the quantity ( , )u   , i.e. one has that  
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where the roots ( 1,2,3,4)k k   of Bessel functions are known (see e.g., [1], [5], [6]),  

 

1 2 3 4

2, 405 5,52 8,654 11,7915
, , ,

a a a a
       . 

 

The latter means that 0 0 0 0(2.405) (5.52) (8.654) (11.7915) 0.J J J J     It is convenient the 

approximate solution (6) of the considered problem (4) to be written in the form  
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This function has the following 3-D graph as for this purpose Matlab was used:  
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Fig. 1 

 

An example for assessment of diffusion's coefficient. The method that we consider here is built 
on two basic facts: 

(i)  Experimental data of the radial distribution to the concentration C of the penetrating liquid 

substance into the cylindrical surface provided that the initial and boundary data are known 
preliminarily.  

(ii) Theoretical distribution received as an approximate solution ( , )u    of the IBVP (4) to the 

diffusion equation under the same initial and boundary data, which can be seen on Fig. 1. 

Assume that the liquid is water which does not provoke any chemical reaction with the matter of 
the surface layer of the cylindrical body, and the period of time T = 7 × 105 [s]. Therefore, the 
liquid penetrates in the cylinder through the radial direction without changing the chemical 
structure. Assume that the radius of the cylinder is a = 0.005  [m], and its length is many times 

greater than 2a. In order to calculate D we measure experimentally the concentration C at a 

finite number of points on the radius of the circular section of the immersed rod, and at many 

fixed times t0=0, t1, t2,…, T.  Next using the transformation formulae 0

1 0

( , )
C C

u
C C

 
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2

D
t

a
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1
r

a
  , as well the measured data for t and r, obtain the following numerical results written in 

the following table:  

 

( , )iu     

 

0.15 

 

0.25 

 

0.35 

 

0.45 

 

0.55 

 

0.65 

 

0.75 

 

0.85 

 

0.95 

 

D 

34.72 
×10-12 

34.72 
×10-12 

34.72 
×10-12 

34.72 
×10-12 

34.72 
×10-12 

34.72 
×10-12 

34.72 
×10-12 

34.72 
×10-12 

34.72 
×10-12 

 

i  

 

0.005 

 

0.01 

 

0.02 

 

0.03 

 

0.04 

 

0.05 

 

0.06 

 

0.07 

 

0.08 

 

ti [s] 

 

3.6   
×103 

 

5 

×103 

 

1 

×104 

 

5 

×104 

 

1 

×105 

 

5 

×105 

 

7 

×105 

 

8 

×105 

 

9 

×105 

Table. 1 

Thus for instance the concentration u  = 0.15 measured at the moment 3

1 3.6 10t    (first vertical 

column) concerns the points located nearby the surface of the cylinder at the distance defined by

1 0.825  . Notice that the quantity  = r/a give us an information for the distance measured 

from the center of the circle through radial direction. The already measured quantity u  = 0.15 
corresponds to the function (0.005; )u u   along with the corresponding graph made at the 

fixed parameter 1  = 0.005, that is shown on the following graph:  
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Fig. 2  

We note that the family of graphs of Fig. 2 are the orthogonal projections of the parallel to the 
coordinate plane Ou  (on Fig. 1) sections cutting the graph of the solution ( ; )u u   .  

The problem for assessment of D can be seen also after drawing a parallel to O   line crossing 

the graph of the function (0.005; )u u   at the point (0.825;0.005).  Next we draw a vertical line 

at the point 0.825   and consider the crossing points located on the graphs corresponding to 

the quantities i  (Table. 1). Finally, calculate the diffusion coefficient by the formula 
2

i

i

a
D const

t
   ( 1,2,...,9)i  , thus conclude that 12 234.72 10 [ / ]D m s  is a constant. 

Furthermore, we demonstrate the constant value of D by computing with aid of the same method 

for 2 0.01  , 3 0.02  , . . . , 9 0.08   which can be seen in Tabl.1.  

As a conclusion we suggest that one may apply the above stated method to calculate the diffusion 
coefficient for nonlinear diffusion models. 
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