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Abstract 
In this presentation we consider a class of reaction-diffusion equations under initial 
and boundary conditions and with nonlinear reaction terms containing a functional of 
type "maxima". By assuming that the initial density as well the boundary data are 
Hölder continuous, and reaction functions have different rates we give two stability 
criteria. We extend the existence and uniqueness result for the parabolic equation 
with delay to the case with "maxima". The uniqueness and asymptotic behavior of the 
solutions are discussed as well. The above mentioned equations are used for 
mathematical simulation in theoretical physics, thermodynamics, chemistry, 
mechanics of materials, biology, ecology, etc. 
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1 Introduction. 

There are lots of mathematical models of evolutionary processes using parabolic partial 
differential equations (PDE) or called reaction-diffusion equations of the form  

                   (1) 

where   is unknown function,   is an uniformly elliptic operator,          , and      is 
a bounded domain in    with a smooth boundary   , [4], [6]. The reaction function   
         depends continuously on the arguments   - time,                - space, and the 
unknown function         . Such parabolic equations can be subjected to certain boundary 
and initial conditions (see e.g. [4]). The boundary condition           is defined by the 

boundary operator          
 

  
        , where        ,         and        are 

nonnegative Hölder continuous functions on the boundary   . The initial condition is given by 

an initial function               in  defined at the initial time   , which can be taken    
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 . Thus we pose the initial and boundary value problem (IBVP). There has been increasing 
interest in the reaction-diffusion equations of type (1) during past few decades. We do 
emphasize that plenty of papers and monographs devoted to these problems have been 
published so far. The qualitative theory to these equations as existence, uniqueness, oscillation, 
stability and blow-up is already developed in details. We encounter mathematical models of 
evolution processes arising in different areas which contain PDEs with delay (deviating), i.e. 
their reaction functions   has the form                       , [1, 2, 9]. Here the unknown 
function   depends smoothly on the time moment    , where the delay (deviation) of the 
time is expressed by    . In other words the unknown function   is taken in a position at   
units back, that is to say as though the equation under consideration has past memory. Of 
special interest is the problem connected with the existence of blow-up solutions, [7]. 

In our presentation there is a more general mathematical model of type (1) with a reaction 
function of the form                 

         
                               

         
       , 

[2, 3, 6]. These equations are known as parabolic PDEs with "maxima". Here   depends not only 
on   taken in the instantaneous time   and space  , but also on the function    

         
       

defined in the time interval         that begins at     and continues to  , and          
for some positive number   that in some cases could be replaced by infinity. Then the domain 
of existence of the PDE must be taken as             . The results of this paper provide 
explicit analytical information about existence, uniqueness and stability of the solutions for 
parabolic PDEs with "maxima". 

In lots of applications of these equations the "maxima" is applied when the control corresponds 
to the maximal deviation of the regulated quantity that could be for instance temperature, heat, 
current density, pressure and so on. Meanwhile, the study of differential equations with 
"maxima" continue in several directions - existence and uniqueness of the solutions, oscillation, 
stability, asymptotic behavior of the solutions etc. The oscillation properties of the solutions of 
the ordinary differential equations with "maxima" were studied by Bainov and his group of 
associates (see e.g., [1, 2, 5], and the references given there). The theory of neutral partial 
differential equations of hyperbolic and parabolic type with "maxima" was represented for the 
first time in the monograph of Bainov and Mishev [1]. More interesting results of existence, 
uniqueness, oscillation, asymptotic behavior of the solutions of PDEs with "maxima" can be seen 
in the same monograph. However, above stated parabolic PDEs with "maxima" are not 
profoundly studied. The stability as well blow-up phenomena of the solutions to functional 
parabolic PDEs with "maxima" were investigated in [3, 6, 7]. 

The main methods for assessment of solutions of functional PDEs as well for investigation of 
existence and uniqueness, stability, blow-up, asymptotic behavior, etc. are the Monotone-
Iterative techniques ([2, 5]) and the Method of Generalized Quasilinearization, [8]. 

In Paragraph 2 we recall the basic definitions, hypotheses and preliminary notes connected with 
the solvability, stability and steady states to the functional PDEs. In Paragraph 3 are considered 
monotonicity and existence-comparison results. The stability results are considered in 
Paragraph 4. The uniqueness of the solution is discussed in Paragraph 5. 
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2 Preliminary notes. 

Denote the partial derivative    
  

  
, that stands for the evolution rate of the unknown density 

        , that means concentration, temperature, population, etc. In most cases the 
evolutionary model is described by an IBVP like (1), where the unknown function   starts in 
some fixed initial moment    and after passing a finite period of time describes the changes in 
the density. The basic question arising from the equations with "maxima" is whether, as time   
increases, the solution          remains in a neighborhood of a steady-state solution 
        . The second question is whether the solution        converges to the steady state 
(steady-state solution) as     . It is important to know for a given steady state    what is 
the set of initial functions whose corresponding time-dependent solutions converge to    as 
    . This leads to the problem of stability of a steady-state solution, often called Lyapunov 
stability. The asymptotic stability of such a solution and its stability region also would be of 
interest. 

Suppose that      . Then the map            is said to be   Hölder (with a   

constant  ) if                    . We write        if      admits partial 
derivatives which are   Hölder. 

Introduce the following notations:  

                                    

                   ̅ 
 

There exists in the technical applications a functional PDE having the form  

                                                   
                         
                               

 (2) 

where    ,    , the function         is known nonnegative and Hölder continuous in     

with initial function                   ̅ ,        is assumed in the class         . 
Further the operator  

  ∑   
             

 

   

 

   
 ∑   

          
 

   
 (3) 

in (2)(a) is uniformly elliptic in the sense that the matrix            is positive definite on   with 

constant not depending on  . We assume that the coefficients of   are in the class 

      ̅          . The boundary operator   is defined by          
 

  
        , 

where         and         are nonnegative functions in          for         and not 
identically zero on         ;      is the outward normal derivative on   . Both functions   
and   are Hölder continuous in     . In addition,          and          are assumed to be 
  -functions in  . 
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Consider the IBVP with "maxima"  

                                  
         

                  

                         
                               

 (4) 

 where   is a given positive constant representing the delay by which is determined the third 

argument    
         

       of the function  , and               in . Assume that     

    . A solution        of IBVP belongs to the class         , i.e.           and          , 
when it satisfies (4). 

Recall some basic definitions. 

 

Definition 1  Let the function          be monotone nondecreasing in  . A function   

                is called an upper solution of IBVP (4) if:  

      ̃    ̃                         
         

 ̃               

       ̃                   
      ̃                         

 (5) 

 Similarly,  ̂                  is called a lower solution if it satisfies the reversed 
inequalities in (5).  

 

Definition 2  A pair  ̃   ̃     ,  ̂   ̂      is called ordered if  ̃   ̂ in   . Then the set of all 
functions          such that  ̂     ̃ in    is denoted by ⟨ ̂  ̃⟩ and is called sector.  

There exist mixed parabolic problems with solutions which do not depend on the time  . Such 
solutions call steady state solutions or steady-states. We denote these solutions by         . 

 

Definition 3  A steady state solution       of (4) is said to be stable if for arbitrary taken positive 
number   there exists another positive number   such that  

                            (6) 

 whenever                 in , where              . If the problem (4) is defined in 
   instead   , and in addition  

   
   

                                       (7) 

 then    is said to be asymptotically stable. The steady-state solution    is called unstable if it is 
not stable.  

In terms of the sup-norm in the space of continuous functions      the condition (6) is 
equivalent to  

           
   

                                   (8) 
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 whenever           , and condition (7) for asymptotic stability becomes  

   
   

            (9) 

The above definition implies that if    is asymptotically stable then it is an isolated steady-state 

solution in the sense that there is a neighborhood   of    in      such that    is the only 
steady-state solution in  . 

 

Definition 4  A steady state solution    is said to be exponentially asymptotically stable when 
conditions (6) and (7) hold and the convergence in (7) is in exponential order. In other words, 
there exist positive constants  ,   such that  

                                     ,(10) 

whenever it holds at    .  

 

Definition 5  The set of initial functions         defined in          under condition 
              for     whose corresponding solutions        of (4) satisfy conditions (6) 
and (7) is called stability region of   . If it is true for all the initial functions then    is said to be 
globally asymptotically stable.  

 

Assume that following hypotheses are satisfied: 

(H1)                     for          and         ,         for         . 

Let      and         in   are the principal eigenvalue and correspondent normalized 
eigenfunction, respectively, of the elliptical problem  

                
               

  (11) 

We note that         is always normalized by                     , and          . 

 

(H2) There is a positive number      such that  

                                               (12) 

 

(H3) There is a continuous function        defined by     
    

    and such that  

                                                (13) 

 where  is some bounded real subset of   . First of all, we prove the following elementary 
result: 
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(H4) The partial derivative           of the function          satisfies the estimate  

              

                             
  (14) 

 where       .  

 

(H5) The partial derivative           of the function          satisfies the estimate  

              

                               
  (15) 

 where       .  

 

(H6) Let in the sector   ̂  ̃  we assume that there exist bounded functions          and 

         such that for the reaction function       in (4) the following inequalities hold 
true,  

                                        (16) 

 where  ̂         ̃           . 

 

Remark 1  The multipliers  ,   stated in (16) can be defined as it is in [3], 

                       ̂     ̃                         ̂     ̃   

Define the function  

                             (17) 

 Obviously, the function    is Hölder continuous in    ⟨ ̂  ̃⟩ and is monotone nondecreasing 
in   ⟨ ̂  ̃⟩. Also    satisfies the Lipschitz condition  

                                                 ̂  ̃   (18) 

 where for instance   may be taken as an upper bound of                   in   . 

Further we use the following lemma,  

Lemma 1  Under (H4) and (H5) the functions   and   satisfy:  

                
                           

  (19) 

 and  

                 

                   (        ) 
  (20) 

respectively. 
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3 Monotonicity and existence-comparison results. 

Define the following linear differential operator of parabolic type,  

   (
 

  
    )                    (21) 

 where   and   are the same as those in (4), and          is a bounded function in 
        . Consider a pair of ordered upper and lower solutions to the problem (4)  ̃ and  ̂, 

respectively, and use       ̃ and       ̂ as two independent initial iterations and define the 
iteration process  

 

         
                                         

         
                       

                            

                                  

 (22) 

where          is some continuous function that can be taken as      
 

             ̂  

   ̃ . Refer to the sequences   ̅    ,        as upper and lower sequences, respectively. 

 

Lemma 2 (Lemma for monotonicity, [9])  Let          be monotone nondecreasing in   ⟨ ̂  ̃⟩. 

Then the sequences   
   

 ,        given by (22) with  
   

  ̃ and         ̂ are well defined 

and possess the monotone property  ̂               
     

  
   

  ̃           

Let define the functions  

  
   

               
         

                             (23) 

and  

  
   

                                        (24) 

where        is the sequence from (22) with initial function               and            . 
By the Hölder continuity of          and the Lipschitz condition of   in   we conclude that both 

functions             and   
   

      are Hölder continuous in    with the same exponent  , 

whenever            . In (22) we use the initial function                        , such 

that the solution           exists in       . 

The following theorem from [9] gives us an existence-comparison result that is very important 
for further study of the problem under consideration. 

 

Theorem 1  Let  ̃,  ̂ be ordered upper and lower solutions of (4), and let         ,          be 

  -functions of   and         for     ̂  ̃ . Then the sequences   
   

 ,        given by (22) 

converge monotonically to a unique solution          of (4), and  ̂     ̃ in   .  

Next we quote an existence and uniqueness result that can be seen also in [9]. 
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Theorem 2  Let  ̃,  ̂ be ordered upper and lower solutions of (4), and let       satisfies 

(H6). Then there exist sequences   
   

 ,        which converge monotonically to a unique 

solution   of (4) and   

 ̂                 
     

  
   

  ̃             

Here we write    instead   . 

 

4 Stability result. 

Here we establish some stability criteria for (4). The proof in detail one can find in [3, 6, 7].  

 

Theorem 3  Let          and          be   -functions w.r.t. R  and let the conditions 

(H1)-(H3), (H6) and the inequality  

 ,),(0 )(  AAet   for  ,0t  0  and  )( constA    

be satisfied. Then a unique nonnegative solution ),( xtu   to (4) exists. Furthermore if

)(),0(0 xxu    then  

 ),(),(0 )( xextu tA    TExt ),( ,  

whenever it holds at 0t  ( A is a constant).  

 

Theorem 4  Given the problem (4). Let the hypotheses in Theorem 3 hold except that the 
condition (H2), (H3) are replaced by (H4), (H5), respectively, and (H6) in addition. If   satisfies  

,ln
1

0
0 







  

where ),(),( 0    depends continuously on   and  , then there exists a 

solution ),( xtuu   of (4) that satisfies the estimate  

 ),(),( )( xextu tA    0t , x  

whenever it holds at 0t . If assume T  and consider the problem (4) in CD , then the 

trivial solution 0su  is exponentially asymptotically stable.  

Concluding our note we emphasise that the following inequality hold:  

 ,)( 0

)(

0    e  

hence  
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 002    and  .21
0









 

 (H7)  Let the reaction function F  be in the form                  
         

        

                       
         

       , and ),,( xtf  belongs to )( RlocL  (the set of all locally 

Lipschitzean functions on R ), while ),,( xtR  is bounded on the bounded sets, where 

TDxt ),(   

 

Theorem 5  Suppose (H7) hold and ),( xtu  is the nonnegative solution of (4) provided that the 

reaction function F  has the form 

  (              
         

      )   (          )   (       
         

      )  If there exist 

constants 0> , 0>  and 0>A  such that   

 ),,0],([)()()
22

())(,,()(

0,)
22

(),,()(

0

0

RPP 













Cxx
A

xxtRb

A
xtfa

 (25) 

 then 0>  and   ),(0 xt  in D  the solution of (4)  

 ).(),( )( xextu tA    (26) 

  

Theorem 6  Suppose (H1) hold and ),( xtu  is the nonnegative solution of (4) provided that the 

reaction function F  has the form  (              
         

      )   (          )  

 (       
         

      )  If there exist constants 0> , 0>  and 0>A  such that  

 

),)((max=)(

)(]
2

))(1
2

[())(,,()(

0,]
2

))(1
2

[(),,()(

],[

01

01

sxxand

xt
A

xxtRb

t
A

xtfa

Ts













 









PP

PP  (27) 

 then 0>  and for any  ),(0 xt   

 .0,>)()(1),(   xtforxtxtu A  (28) 
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Theorem 7  Let  (H1) hold and let z  be a nonnegative function defined on )[0, 0T  and 

unbounded at some point in   as 0Tt . If z  is a lower solution of (4) in TD  for every 0<TT  

then there exists other positive number 0TT   such that a unique solution ),(= xtuu  exists in 

](0, 0T  and 


=]max[lim u
xTt

.  

Lemma 3  Let the condition ),()(1=)( 1 tttm   ).[0,)(1)(<0 TtallforAt A    be 

satisfied. Then the function Atz   )(1=  satisfies the differential inequality 

).[0,),(max)()(1
],[

1 Ttsztmzt
dt

dz

tts









  

 (28*) 

  

Proof. We have 1)(1)(=  AtA
dt

dz  . Thus the differential inequality  (28*) becomes:  

 ).[0,,))(1()(1)(1)(1)( 11 TtttmtttA AAA      

Suppose (28*) is not true, hence  

 
.

1
1)(1>)(

,))(1(<)(1

1

1

A

AA

t
tAtm

andttmtA



























 

Having in mind this and also  ),()(1=)( 1 tttm   (29) 

 ,)[0,)(1)(<0 TtallforAt A    (30)  

 

  

 

).[0,
1

1)(<0 Ttfor
t

At

A

















  (31) 

     

 

 

(29) - (31) it turns out that the latter contradicts to (31).  
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5   Uniqueness of the solutions.  

 First, we consider the regularity of ),(max),(
],[

xsuxtU
tts 

 .  

Lemma 4  If )( TELipu   then ),(max),( ],[ xsuxt tts   is in )( TDLip .  

  

Proof. Let us choose any points  ][0,),(),,( 2211 Txtxt . Since  

 ),,(),(|),(),(| 11222211 xstuxstuxstuxstu   

we have  

 ).,(max),(max|),(),(|max 11
,0][

22
,0][

2211
,0][

xstuxstuxstuxstu
sss


 

 

Similarly we have  

 ).,(max),(max|),(),(|max 22
,0][

11
,0][

2211
,0][

xstuxstuxstuxstu
sss


 

 

Then we get  

 .|),(max),(max||),(),(|max 22
,0][

11
,0][

2211
,0][

xstuxstuxstuxstu
sss


 

 (32) 

 We have by admission that  

 ,|)||(||),(),(| 21212211

xxttHxtuxtu   

where H  is the Hölderian constant which is independent of 
121 ,, xtt  and 

2x .  

Due to (32) one has that  

 

.,],[0,,

,
|)||(|

|),(),(|
max

|)||(|

|),(),(|

2121

2121

2211

,0][
2121

2211















xxTttfor

H
xxtt

xstuxstu

xxtt

xtUxtU

s



  

Hence ),( xtU  is in )( TDLip .  

  

Remark 2  Evidently Lemma 4 is true when Hölder is replaced with Lipschitz. However 
),(max),( ],[ xsuxt tts   is not continuously differentiable (but only Lipschitz) even for analitic 

),( u . Indeed let 2=)( xxu . If 
2

<


t , then 2
],[ )(=)(max   xsuxxs . When 

2


x , then 

2
],[ =)(max xsuxxs  . The left derivative of )(max ],[ suxxs   at 

2


 is   while the right one is 

.  

 We notice that f  and R  are 1C functions in the sector uu ~,ˆ . For a given pair of ordered 

upper and lower solutions u~ , û , we use uu ~=(0)  and uu ˆ=(0)  as two independent initial 
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iterations and construct their respective sequences from the iteration process  

 
T

k

tts

kkkkk

t DnxsuxtRuxtfcucuLuu i)),(max,,(),,(= 1)(

],[

1)(1)()()()( 



 


 

 T

k SnxthBu o),(=)(  

 ,i),(=),( 0

)(

 Dnxtxtu k  

 where }.~ˆ);,,({sup=),( uuuuxtfxtc u   Denote the above stated sequences by }{ )(ku , and 

refer to them as upper and lower sequences, respectively. The following statement hold: 

 

Theorem 8 ([3], [9]) Under the above assumptions, the sequences }{ )(ku , }{ )(ku  converge 

monotonically to a unique solution u  to (4), and uuu ~ˆ   in 
TE .  

 The uniqueness can be formulated by the following statement: 

 

Theorem 9  Let the hypotheses (H1)-(H3) be satisfied. Then a unique solution ),(= xtuu  of (4) 

exists and satisfies the inequality  

 ,),(),()(1|),(| T

A Extxtxtu    (30) 

 whenever )()(1|),(| 0 xtxt A   in D . And the steady-state solution 0u  is 

asymptotically stable.  

 

Conclusion.  

Notice that if we study the problem (4) in CD  instead of TD , then the solution )(., xu  decays 

uniformly on x . Another result of interest for existence and uniqueness can be obtained under 
analogical requirements, that is, a unique solution ),( xtuu   of (4) exists and satisfies the 

inequality  

 )()1(),( xtxtu   TExt ),(  

whenever )()1(),(0 xtxt    in D , and the steady-state solution 0u  is 

asymptotically stable. We refer the reader to [3, 6, 7] for details. 
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