A. Zeinev , N. Kitanov, JMTI Vol 2 Issue 1 2014

The Journal of MacroTrends in
Technology and Innovation

MACROJOURNALS

Estimates for Functional Partial Differential
Equations

A. Zeinev*, N. Kitanov**

*University of Chemical Technology and Metallurgy, 8 K. Ohridski, 1756 Sofia, Bulgaria

**Institute of Mathematics and Informatics — BAS, Department of Operation Research, Blagoevgrad,
Bulgaria

Abstract

In this presentation we consider a class of reaction-diffusion equations under initial
and boundary conditions and with nonlinear reaction terms containing a functional of
type "maxima". By assuming that the initial density as well the boundary data are
Hélder continuous, and reaction functions have different rates we give two stability
criteria. We extend the existence and uniqueness result for the parabolic equation
with delay to the case with "maxima". The uniqueness and asymptotic behavior of the
solutions are discussed as well. The above mentioned equations are used for
mathematical simulation in theoretical physics, thermodynamics, chemistry,
mechanics of materials, biology, ecology, etc.
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1 Introduction.

There are lots of mathematical models of evolutionary processes using parabolic partial
differential equations (PDE) or called reaction-diffusion equations of the form

u—Lu=F in D, (1)

where u is unknown function, L is an uniformly elliptic operator, D = (0,T) X , and Q € R" is
a bounded domain in R™ with a smooth boundary dQ, [4], [6]. The reaction function F =
F(t, x,u) depends continuously on the arguments t - time, x = (x4, X5, ..., X,) - space, and the
unknown function u = u(t, x). Such parabolic equations can be subjected to certain boundary
and initial conditions (see e.g. [4]). The boundary condition Bu = h(t,x) is defined by the

boundary operator BEaO(t,x)%+ﬁO(t,x), where ay(t,x), Bo(t,x) and h(t,x) are

nonnegative Holder continuous functions on the boundary dD. The initial condition is given by
an initial function uy(x) = u(ty,x) in £ defined at the initial time t,, which can be taken t, =
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0. Thus we pose the initial and boundary value problem (IBVP). There has been increasing
interest in the reaction-diffusion equations of type (1) during past few decades. We do
emphasize that plenty of papers and monographs devoted to these problems have been
published so far. The qualitative theory to these equations as existence, uniqueness, oscillation,
stability and blow-up is already developed in details. We encounter mathematical models of
evolution processes arising in different areas which contain PDEs with delay (deviating), i.e.
their reaction functions F has the form F(t, x, u(t, x),u(t — o,x)), [1, 2, 9]. Here the unknown
function u depends smoothly on the time moment t — g, where the delay (deviation) of the
time is expressed by g > 0. In other words the unknown function u is taken in a position at o
units back, that is to say as though the equation under consideration has past memory. Of
special interest is the problem connected with the existence of blow-up solutions, [7].

In our presentation there is a more general mathematical model of type (1) with a reaction
function of the form F (¢, x,u(t,x), max u(s,x)) = f(t,x,u(t,x)) + R(t,x, max u(s,x)),
SE[t—o,t] SE[t—o,t]

[2, 3, 6]. These equations are known as parabolic PDEs with "maxima". Here F depends not only
on u taken in the instantaneous time t and space x, but also on the function I[Itlaxt]u(s, X)
SE[t—o,

defined in the time interval [t — o, t] that begins at t — ¢ and continues to t, and t € [—a,T)
for some positive number T that in some cases could be replaced by infinity. Then the domain
of existence of the PDE must be taken as D_, = [—0,T) X Q. The results of this paper provide
explicit analytical information about existence, uniqueness and stability of the solutions for
parabolic PDEs with "maxima".

In lots of applications of these equations the "maxima" is applied when the control corresponds
to the maximal deviation of the regulated quantity that could be for instance temperature, heat,
current density, pressure and so on. Meanwhile, the study of differential equations with
"maxima" continue in several directions - existence and uniqueness of the solutions, oscillation,
stability, asymptotic behavior of the solutions etc. The oscillation properties of the solutions of
the ordinary differential equations with "maxima" were studied by Bainov and his group of
associates (see e.g., [1, 2, 5], and the references given there). The theory of neutral partial
differential equations of hyperbolic and parabolic type with "maxima" was represented for the
first time in the monograph of Bainov and Mishev [1]. More interesting results of existence,
uniqueness, oscillation, asymptotic behavior of the solutions of PDEs with "maxima" can be seen
in the same monograph. However, above stated parabolic PDEs with "maxima" are not
profoundly studied. The stability as well blow-up phenomena of the solutions to functional
parabolic PDEs with "maxima" were investigated in [3, 6, 7].

The main methods for assessment of solutions of functional PDEs as well for investigation of
existence and uniqueness, stability, blow-up, asymptotic behavior, etc. are the Monotone-
Iterative techniques ([2, 5]) and the Method of Generalized Quasilinearization, [8].

In Paragraph 2 we recall the basic definitions, hypotheses and preliminary notes connected with
the solvability, stability and steady states to the functional PDEs. In Paragraph 3 are considered
monotonicity and existence-comparison results. The stability results are considered in
Paragraph 4. The uniqueness of the solution is discussed in Paragraph 5.
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2 Preliminary notes.

Denote the partial derivative u; = 2—1:, that stands for the evolution rate of the unknown density
u = u(t,x), that means concentration, temperature, population, etc. In most cases the
evolutionary model is described by an IBVP like (1), where the unknown function u starts in
some fixed initial moment t, and after passing a finite period of time describes the changes in
the density. The basic question arising from the equations with "maxima" is whether, as time t
increases, the solution u = u(t,x) remains in a neighborhood of a steady-state solution
U, = ug(x). The second question is whether the solution u(t, x) converges to the steady state
(steady-state solution) as t — +oo0. It is important to know for a given steady state u; what is
the set of initial functions whose corresponding time-dependent solutions converge to ug as
t — 4oo. This leads to the problem of stability of a steady-state solution, often called Lyapunov
stability. The asymptotic stability of such a solution and its stability region also would be of
interest.

Suppose that 0 < 6 < 1. Then the map u:® c R*! - R is said to be 8 Hélder (with a
constant k) if |Ju(x) —u@)| <kllx—yl° We write ue C**? if u(-) admits partial
derivatives which are 8 Holder.

Introduce the following notations:

Dy =(0,T] x Q, St =(0,T] x0Q, D_, =[—0,0] X Q,

CD=R*%xQ, E;r=[-0,T]xQ

There exists in the technical applications a functional PDE having the form

(@) ug — Lu = f(t,x,u(t,x)) + R(t,x,u(t —o,x)) in Dr,

(b) Bu= h(t,x) on Sr, (2)
(c) u(t,x) =no(t,x) in D_g,

where T > 0, ¢ > 0, the function 1, (t, x) is known nonnegative and Hélder continuous in D_

with initial function uy(x) = 10(0,x) € C?(Q), h(t,x) is assumed in the class C'*9(S;).
Further the operator

a 0 a
L = 22j=1 aij(t' x) a—XLa—x] + Z}l:l b] (t, X) 6_x] (3)

in (2)(a) is uniformly elliptic in the sense that the matrix {a;;(t, x)} is positive definite on Q with
constant not depending on t. We assume that the coefficients of L are in the class
C*%(Q) (0 < 6 < 1). The boundary operator B is defined by B = ao(t,x)%+[>’0(t,x),
where a,(t,x) and Bo(t,x) are nonnegative functions in C'*9(9Q) for t € [0,00) and not
identically zero on [0, ) X d(); d/ dv is the outward normal derivative on d(). Both functions f

and R are Holder continuous in Dy X R. In addition, f(¢t,x,n) and R(t,x,n) are assumed to be
C1-functions in 7.
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Consider the IBVP with "maxima"
(@) ug — Lu = f(t,x,u(t,x)) + R(t, x, Er[rlgaxt]u(s, x)) in Dr,
N -0,
(b) Bu= h(t,x) on S, (4)
(c) u(t,x) =no(t,x) in D_g,

where o is a given positive constant representing the delay by which is determined the third
argument Er[rtlaxt]u(s, x) of the function R, and 1,(0,x) = ug(x) in £. Assume that f, R €
SE[t—o,

C*9. A solution u(-,-) of IBVP belongs to the class C*?(Dy), i.e. u(-,x) € C* and u(t,”) € C?,
when it satisfies (4).

Recall some basic definitions.

Definition 1 Let the function R(:,-,m) be monotone nondecreasing in n. A function u €
CP(E;) n CY?(Dy) is called an upper solution of IBVP (4) if:

(a) iy — Lt = f(t,x,u(t,x)) + R(t,x, max tu(s)) in Dr,
SE[t—o,t]

(b) Bii > h(t,x) on Sr, (5)
(c) 1(0,x) = no(t,x) in D_,.

Similarly, @ € C?(E;) N CY%(Dy) is called a lower solution if it satisfies the reversed
inequalities in (5).

Definition 2 A pair i = 1i(t,x), &t = 1(t,x) is called ordered if ti = 1 in Er. Then the set of all
functions z = z(t, x) such that it < z < i in E is denoted by (1, ti) and is called sector.

There exist mixed parabolic problems with solutions which do not depend on the time t. Such
solutions call steady state solutions or steady-states. We denote these solutions by u; = ug(x).

Definition 3 A steady state solution uy(x) of (4) is said to be stable if for arbitrary taken positive
number € there exists another positive number 6 such that

lu(t,x) —us(x)| < e in Dy (6)

whenever |uy(x) — us(x)] < & in Q, where uy(x) = 10(0, x). If the problem (4) is defined in
CD instead Dy, and in addition

tlimlu(t, x) —us(x)| = 0, uniformly on Q, (7)

then u, is said to be asymptotically stable. The steady-state solution u; is called unstable if it is
not stable.

In terms of the sup-norm in the space of continuous functions C(Q) the condition (6) is
equivalent to

Il u—us llg=suplu(t,x) —us(x) <& for every t>0 (8)
X€Q
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whenever || uy — ug llo< &, and condition (7) for asymptotic stability becomes
lim 1l 2 — g llo= 0. (9)

The above definition implies that if ug is asymptotically stable then it is an isolated steady-state

solution in the sense that there is a neighborhood U of uy in C(ﬁ) such that ug is the only
steady-state solution in U.

Definition 4 A steady state solution ug is said to be exponentially asymptotically stable when
conditions (6) and (7) hold and the convergence in (7) is in exponential order. In other words,
there exist positive constants p, a such that

lu(t, x) — us(x)| < pe™®, for t>0, x € Q,(10)

whenever it holds at t = 0.

Definition 5 The set of initial functions ny(t,x) defined in [—a,0] X 2 under condition
uy(x) =ny(0,x) for x € 2 whose corresponding solutions u(t,x) of (4) satisfy conditions (6)
and (7) is called stability region of us. If it is true for all the initial functions then ug is said to be
globally asymptotically stable.

Assume that following hypotheses are satisfied:

(H1) f(t,x,0) = R(t,x,0) = 0 for (t,x) € Dy and h(t,x) = 0, By(x) # 0 for (t,x) € Sr.

Let A(t) and ®(x)(t) in Q are the principal eigenvalue and correspondent normalized
eigenfunction, respectively, of the elliptical problem

—Lu=Au in Q,
Bu=0 on 0Q.

We note that ®(x)(+) is always normalized by max{®(x)(t): x € Q} = 1, and A(t) = A, > 0.

(11)

(H2) There is a positive number a < A, such that
ft,x,n) < (Ayg—a)n for n=0 and (t,x) € D. (12)

(H3) There is a continuous function y (o, t) defined by y: R§ x R$ — T and such that
R(t,x,&) <y(o,t)¢ for £€>0 and (t,x) € Dy, (13)

where I is some bounded real subset of R*. First of all, we prove the following elementary
result:
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(H4) The partial derivative f; (¢, x,n) of the function f (¢, x, 1) satisfies the estimate
Gx,n) <A —a

14
for Inl<p, p>0 ((t.x) € Dy), (4
where 4o > a > 0.
(H5) The partial derivative R¢(t, x, ¢) of the function R(t, x, §) satisfies the estimate
Re(t,x,&) < Ag —
(68 <2~ p 15)

for & < p1, p1 >0 ((¢x) € Dyp),
where 4o > [ > 0.

(H6) Let in the sector (ii, i) we assume that there exist bounded functions ¢ = c(t,x) and
¢ = c(t, x) such that for the reaction function F = f + R in (4) the following inequalities hold
true,

—c(uy —uy) < F(t,x,uy) —F(t,x,uy) < c(uy —uy), (16)

wherell < u, <u; <4 ((t,x) € Dr).

Remark 1 The multipliers ¢, ¢ stated in (16) can be defined as it is in [3],
c(t,x) = sup{—f,(t,x,u):t <u < i}, c(t,x) = sup{f,(t, x,u): 1t <u < i}.

Define the function
Fi(t,x,u) = c(t,x)u+ f(t, x,u). (17)

Obviously, the function F; is Holder continuous in ET X (I, 1) and is monotone nondecreasing
inu € (4, 7). Also F; satisfies the Lipschitz condition

|Fi(t, x,uq) — Fi(t, x,uy)| < Klug —uy| for uq,u, € (4, 1), (18)
where for instance K may be taken as an upper bound of |c(t,x)| + |c(t, x)]| in Dr.
Further we use the following lemma,

Lemma 1 Under (H4) and (H5) the functions f and R satisfy:

ftx,m) < (Ao —a)y

for In|<p, p>0 ((t,x) € Dy) (19)
and
fR(t,x,$) < (Ao — B)S o0

for 1§1<py, p1 >0 ((¢,x) € D),

respectively.
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3 Monotonicity and existence-comparison results.

Define the following linear differential operator of parabolic type,

a .
Le=(3—-L+c) in (O,T]XR", (21)

where L and T are the same as those in (4), and ¢ = c(t,x) is a bounded function in
(0,T] x R™. Consider a pair of ordered upper and lower solutions to the problem (4) @ and i,
respectively, and use u® = % and u(® = @ as two independent initial iterations and define the
iteration process

(@) L [u®] = cu®D + £(t,x,u* "V (t,x)) + R(t, x, Er[rtlaxt]u("_l) (s,x)) in Dr,
S —0,
(b) Bu® = h(t,x) on Sy, (22)
() u®(t,x) =no(t,x) in D,
where ¢ = c(t, x) is some continuous function that can be taken as ¢ = sup{—f, (¢, x,u): 4 <
u

u < ii}. Refer to the sequences {Ti®}, {u®} as upper and lower sequences, respectively.

Lemma 2 (Lemma for monotonicity, [9]) Let R(t, x, &) be monotone nondecreasing in & € (4, ii).
Then the sequences (T}, {u®} given by (22) with u*
and possess the monotone property @ < u® < u®+D <7®* <™ < g in E;

= 1 and {u9} = 0 are well defined

Let define the functions

() = (k) ;

q, (t,x) R(t,x,ser[rt@c)r('t]u (s,x)), in (t,x) € Dy, (23)
and

a0 (t,%) = c(t, )u® (t, x) + £ (t, x,u® (¢, x)), (24)

where {u(®} is the sequence from (22) with initial function {u(®} € €(E;) and u® € c?(D;).
By the Holder continuity of R(t, x, §) and the Lipschitz condition of R in & we conclude that both
functions R(t,x,u®) and qgk)(t, x) are Holder continuous in Dy with the same exponent 6,
whenever u® € €9(Dy). In (22) we use the initial function u™ (0, x) = 1,(0, x) = uy(x), such
that the solution u (t, x) exists in C% (Dy).

The following theorem from [9] gives us an existence-comparison result that is very important
for further study of the problem under consideration.

Theorem 1 Let i, il be ordered upper and lower solutions of (4), and let f(t,x, &), R(t,x, &) be
C1-functions of &€ and OR /93¢ = 0 for & € (i, 1i). Then the sequences {H(k)}, {g(")} given by (22)
converge monotonically to a unique solution u = u(t,x) of (4), and i < u < i in Ey.

Next we quote an existence and uniqueness result that can be seen also in [9].
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Theorem 2 Let i, i be ordered upper and lower solutions of (4), and let F = f + R satisfies

(H6). Then there exist sequences {ﬁ(k)}, {u®™} which converge monotonically to a unique
solution u of (4) and

a<u® <ult) <y <7V <a® < in E,.

Here we write E instead Dr.

4 Stability result.

Here we establish some stability criteria for (4). The proof in detail one can find in [3, 6, 7].

Theorem 3 Let f(t,x,&) and R(t,x,&) be Cl-functions w.r.t. £ € R* and let the conditions
(H1)-(H3), (H6) and the inequality

0<y(o,t) < A4, for t>0, 0>0 and a > A (A4 = const)
be satisfied. Then a unique nonnegative solution wu =(¢,x) to (4) exists. Furthermore if
0 <u(0,x) < p®(x) then

0 <u(t,x) < pe™ " "d(x), (t,x) e E,,

whenever it holds at £ =0 ( 4 is a constant).

Theorem 4 Given the problem (4). Let the hypotheses in Theorem 3 hold except that the
condition (H2), (H3) are replaced by (H4), (H5), respectively, and (H6) in addition. If o satisfies

A
a-A A -p’

0<o<

where A =A(f,0)<e(4,—f,a) depends continuously on g and o, then there exists a
solution u = u(z,x) of (4) that satisfies the estimate

u(t,x)| < pe ' D(x), 1>0, xeQ

whenever it holds at £ =0. If assume 7 =-+oo and consider the problem (4) in CD, then the
trivial solution u_ = 0 is exponentially asymptotically stable.

Concluding our note we emphasise that the following inequality hold:
a>A>(4, - e N > - p,

hence
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24, >a+ >4, and 1< <2

a+pf
4

(H7) Let the reaction function F be in the form F(t, x,u(t x), er[rtlaxt]u(s,x))z
S -0,

f(t, x,u(t,x)) + R(t,x, E1r[rt1axt]u(s, x)), and f(¢,x,) belongsto L, (R") (the set of all locally
S -0,

oc

Lipschitzean functions on R"), while R(z,x,) is bounded on the bounded sets, where
(t,x) € Dy

Theorem 5 Suppose (H7) hold and u(t,x) is the nonnegative solution of (4) provided that the
reaction function F' has the form

F <t, x, u(t, x), SEr[rtlilgf('t]u(s, x)) = f(t, x, u(t, x)) +R <t, X, Ser[lgilg(,t]u(s, x)). If there exist
constants >0, >0 and A>0 such that
@ faxm=ra+in v 520

(b) R(t,x,f(X))Z(%+ﬂ+§)P§(X)P V ¢(x) e C([-0,0].R), (25)

then Vo >0 and V7,(¢,x)=9J in D__ the solution of (4)

u(t,x) > e “ ' P(x). (26)

Theorem 6 Suppose (H1) hold and u(t,x) is the nonnegative solution of (4) provided that the

reaction function I has the form F <t, x, u(t, x), Er[lgaxt]u(s, x)> = f(t, x, u(t, x)) +
S -0,

R (t, X, EI[‘rtlaxt]u(s, x)>. If there exist constants >0, >0 and A>0 such that
S -0,

@ flxmzla+ )+’ +%]n V20,

(b) R(f,x,f(x))z[(ﬂﬂLg)(lH)1+%]P§(X)P (27)
and P&(x)P = max ]f(x)(S),

se[-o,7T-o

then V6 >0 and for any 7,(t,x) 2

u(t,x) = S(1+ )" d(x) for t>0,xeQ. (28)
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Theorem 7 Let (H1) hold and let z be a nonnegative function defined on [0,7}))x§_2 and
unbounded at some point in Qast— T,. If z is a lower solution of (4) in Dr forevery T <T,
then there exists other positive number T" < T, such that a unique solution u = u(t,x) exists in

(0,%]><§ and lim [max u]=o.

(T xeQ

Lemma 3 Let the condition m(t) = (1+¢)" B(t), 0< ()< A(1—o)*" for all t €[0,T). be

satisfied. Then the function z = p(1+1t)"**" satisfies the differential inequality

% >—a(1+8)" z+m(t) max z(s), t€[0,T). (28%)

se[t—o,t]

Proof. We have % =(A—-a)p(1+1)™*"" . Thus the differential inequality (28*) becomes:

(A—a)p(1+1) " > —pa(1+6)"' 1+ + pm()(1+t — o), t €[0,T).
Suppose (28*) is not true, hence

A+ " <m()(A+t-0) ™, and

m(t) > A(1+t)“(1—ija .
1+1¢

Having in mind this and also m(t)=(1+1)" B(2), (29)
0<Bt)< A1—o)*" for all t €[0,T), (30)
0< B(f) < A(l—ij _ for t €[0,T).

1+1¢ (31)

(29) - (31) it turns out that the latter contradicts to (31).
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5 Uniqueness of the solutions.

First, we consider the regularity of U(¢,x) = max u(s, x).

selt—o,t]

Lemma 4 If u € Lip’(E,) then (t,x) — max,.y_o.u(s,x) is in Lip’(D,).

Proof. Let us choose any points (,,x,), (¢,,x,) € [0,T]xQ. Since
|u(t, +s,x)—u(t, +s,x,) | +u(t, +s,x,) 2 u(t, +s,x,),
we have

max |u(t, +s,x)—u(t, +s,x,) |+ max u(t, +s,x,) > max u(t, +s,x,).

se[—o,0] se[—o,0] se[—o,0]
Similarly we have

max |u(t, +s,x)—u(t, +5,%,) |+ max u(t, +5,x)= max u(t,+s,x,).

se€[—-0,0] se€[—-0,0] se[—-0,0]
Then we get
max |u(t, +s,x,)—u(t,+5,x,) 2| max u(t, +s,x,)— max u(t, +s,x,)|. (32)
se[—o,0] se[—o,0] se[—o,0]

We have by admission that

|ulty, x)~u(ty, x,) [ H( 6, 1, | +] 5, —x, ),
where H is the Holderian constant which is independent of 7, ¢,, x, and x,.
Due to (32) one has that

\U(t, x)-Ul(t,,x,) ]| |u(t, +s,x)—u(t, +s,x,) |
> < max 7 <
(=t [+][x —x,]) se-o01 (|4, =1, |+|x, —x, ) .
for t,t,€[0,T], x,x, Q.

2

Hence U(t,x) isin Lip®(D,).

Remark 2 Evidently Lemma 4 is true when Hélder is replaced with Lipschitz. However
(¢,X) = max,q:o..14(S, X) is not continuously differentiable (but only Lipschitz) even for analitic

o o
u(-"). Indeed let u(x)=x>.If t < BX then max ., o.qu(s) = (x— o)’. When x> EX then
o
MAX sefx—o . U(S) = x>. The left derivative of MAaX o U(s) at 3 is —o while the right one is o

We notice that /' and R are C'—functions in the sector <L?,L7> For a given pair of ordered

upper and lower solutions #, 7, we use u” =% and u® =4 as two independent initial
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iterations and construct their respective sequences from the iteration process

u® —Lu® +cu® =cu™ ™ + £(t,x,u"™)+ R(t,x, max u* " (s,x)) in D,

selt—o,t]
Bu® =h(t,x) onS,
u(k)(t,X):ﬂo(t,X) ll’l D,O.,

where c(t,x) =sup{—f,(¢,x,u); i <u<iu}. Denote the above stated sequences by {#*’}, and
refer to them as upper and lower sequences, respectively. The following statement hold:

Theorem 8 ([3], [9]) Under the above assumptions, the sequences {ii'"'}, {u'®} converge
monotonically to a unique solution u to (4), and u<u<u in E,.

The unigueness can be formulated by the following statement:

Theorem 9 Let the hypotheses (H1)-(H3) be satisfied. Then a unique solution u = u(t,x) of (4)
exists and satisfies the inequality

lu(t,x) |< p(1+2) ' D(x), (¢,x)€E,, (30)

whenever |7,(t,x)[< p(1+1)“**®(x) in D_. And the steady-state solution u=0 is
asymptotically stable.

Conclusion.

Notice that if we study the problem (4) in CD instead of D, , then the solution u(.,x) decays

uniformly on x. Another result of interest for existence and uniqueness can be obtained under
analogical requirements, that is, a unique solution u =u(z,x) of (4) exists and satisfies the

inequality

u(t,x)| < p(l+1) " ®(x) (t,x)€E,

whenever |770 (t, x)| <p(+t)“*d(x) in D_, and the steady-state solution u=0 is
asymptotically stable. We refer the reader to [3, 6, 7] for details.
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