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Abstract 
E The industrial development based on the massive use of fossil fuels has led to an 
ecological imbalance and to a depletion of natural energy resources. This energy and 
ecological deficit has given the first important start to renewable energy, in particular 
wind energy. Therefore, many countries have begun their investigation in wind power 
generators. Also, several National Institutes such as NREL (USA), ECN (Netherlands), 
and Riso (Denmark) have conducted many studies in this area. An accurate prediction 
of aerodynamic characteristics of wind turbine blade airfoils is considered as the key 
to achieve satisfactory levels of exactness of aerodynamic loads evaluation, and 
therefore, in designing reliable and efficient wind turbines. In this context, the 2-
dimensional pressure coefficients calculations were made for the S809 potential-flow, 
wind-turbine airfoil using the potential theory of arbitrary wing sections, precisely the 
Theodorsen’s model. Comparisons of the computed pressure has been made with 
wind tunnel data from the Delft University 1.8 m × 1.25 m low turbulence wind tunnel.  
This paper gives an exact solution of the problem of theoretical flow of a frictionless 
incompressible fluid past S809 airfoil. A numerical method is presented, aimed at 
determining the velocity of the 2-dimensional flow for any point at the surface of the 
S809 airfoil, and for any orientation. From this pattern flow, the pressure distribution 
around the airfoil is obtained thanks to the Bernoulli’s relation for any angle of attack 
and also for any Reynolds number. A complete computer code package for simulation 
was developed to obtain accurate numerical values in acceptable computational time. 
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1. Introduction and background 

To reach satisfactory levels of accuracy of aerodynamic loads prediction, applied on the 
horizontal-axis wind turbine, an accurate evaluation of the pressure coefficients remains an 
important step. However, in unsteady conditions, these pressure coefficients predictions remain 
complicated due to the complex nature of the flow around airfoil. 

Since the time that Eiffel first developed the use of the wind tunnel for determining the 
aerodynamic characteristics of airfoils, a great amount of data has been accumulated. Many 
attempts have been made in analysis of these data to develop a method for the prediction of 
airfoil characteristics. 

It is suddenly that the design of a viable wind turbine, involves a lot of problems. Among these 
problems we note, the unavailability of the accurate experimental data sets for the correct 
airfoils throughout the design space, the wind tunnel tests are often heavy and costly to put in 
place and are less rapid than the numerical simulations. 

A simple Error in the pressure coefficients used will result in errors in the wind turbine’s 
performance evaluates. So the designers must rely on relevant calculations. 

To predict the pressure coefficients, a variety of mathematical models exist, such as the 
computational fluid dynamics (CFD) method, the panel method and the potential theory, each 
with different levels of accuracy and complexity, and also with various  scopes of application. 

The CFD method has experienced significant progress thanks to the improvement of computers 
performance. Despite the accurate results obtained in most cases, CFD methods require huge 
computational resources and large memory. The application of this technique shows that there 
are two areas in CFD that require further investigation and development in order to enable 
accurate numerical simulations of flow about current generation wind-turbine airfoils: transition 
prediction and turbulence modeling [1]. The results show that the laminar-to-turbulent transition 
point must be modeled correctly to get accurate simulations for attached flow and also show 
that the standard turbulence model used in most commercial CFD codes, the k-ε model, is not 
appropriate at angles of attack with flow separation. 

The pressure coefficients of wind turbine rotor can be obtained relatively accurately using the 2D 
panels’ method, it consists to separate the flow into two parts: within the boundary layer which 
the fluid is considered as viscous and outside this layer which the flow is considered as potential 
[2]. The concept of the boundary layer has been introduced for the first time in 1904 by Prandtl 
[3]. This method is computationally efficient and yield accurate solutions for attached flow, but in 
general, they cannot be used for post-stall calculations [4]. However, this technique has not yet 
been applied to a wide range of sections of wind turbine blades. 

The potential theory solves theoretically the 2D flow of a frictionless incompressible and inviscid 
fluid around airfoils of arbitrary shape. The velocity of this flow has been expressed by an exact 
mathematical formula, which doesn’t use any approximation during its development, which 
provides a satisfactory prediction of pressure coefficients. 
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The potential method offer a wide range scope of application than the panels method and is 
relatively easy to implement compared with CFD methods. Consequently, the potential theory 
can be a better choice for predicting the pressure coefficients of a wind turbine rotor.  

The main objective of this paper is to develop a numerical procedure that can predict pressure 
coefficients without using great amounts of computer time.  

To validate this numerical simulation, a comparison is made with measurements performed in 
the Delft University 1.8 m × 1.25 m low turbulence wind tunnel. 

2. Mathematical Model 

2.1. Historical developments 

Obtain an accurate and efficient aerodynamic models have been an important objective that has 
pushed researchers to invest the enormous efforts over the last century. These aerodynamic 
models are required to characterize the aerodynamic airfoils and to assess the aeroelastic 
stability. 

Among the aerodynamic models in the literature, the conventional models of Wagner [5], 
Theodorsen [6, 7] and Theodorsen-Garrick [8]. These models remain widely used and provide a 
reference point for the linear models which in come from. The model of Theodorsen is 
particularly interesting, because it is derived from principles using clear assumptions, namely the 
non-viscosity and the incompressibility of the fluid. 

The two-dimensional potential theory of airfoils in a non-uniform movement was introduced for 
the first time by Wagner [5], and has been extended to problems involving the movement of 
hinged or flexible blades by Theodorsen [6] and Kussner [9]. 

The potential theory, and in particular the Theodorsen’s model, solves theoretically the two-
dimensional flow of an incompressible and non-viscous fluid around an airfoil of arbitrary shape, 
the velocity of this flow is explicitly expressed for any point on the surface of airfoil with the 
desired accuracy and without any approximation, for any orientation and for any camber and 
thickness of airfoil,  by an exact expression containing a number of settings which are only in 
function of the form and which can be assessed by suitable  graphical methods. 

2.2. Method of procedure 

2.2.1. Statement of the problem 

The problem that is the subject of this report and that we are trying to deal may be formulated 
as follows: Given the S809 airfoil, titled by an angle of attack in a non-viscous and incompressible 
fluid, flows with uniform velocity V to determine the theoretical 2D velocity and pressure 
distribution at all points of the surface for all orientations, and to investigate the properties of 
the field of flow surrounding the airfoil.  
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2.2.2. Airfoil section and axis of coordinates 

For this study, we chose an airfoil whose aerodynamic characteristics are representative of 
horizontal axis wind-turbine (HAWT) airfoils, the S809. The S809 is a 21% thick airfoil designed 
specifically for HAWT applications [10]. 

The axis of coordinates is drawn through the point (2a, 0) and (-2a, 0) located respectively at the 
point midway between the nose and the center of curvature of the nose and the point midway 
between the tail and the center of curvature of the tail. 

So the points (x, y) of the upper and lower surfaces of the airfoil are determined with respect to 
this axis. A sketch of the S809 Airfoil and the axis of coordinates are shown in Figure 1. 

 

Fig.1. Diagram Showing system of coordinates 

It is to be noted that the angle of attack α has been measured from the line of flow to the x-axis 
as shown in Figure1, and if it is otherwise measured, it must be adapted to this basis. 

2.2.3. Transformation of an arbitray airfoil into a circle – Theorem of Riemann 

The Riemann’s theorem shows that it is always possible to transform the potential field around 
any closed contour into the potential field around a circle. 

The direct transformation of an airfoil into a circle may conveniently be carried out in two steps: 
the first step consists to transform the airfoil into an almost circular curve, and the second step is 
to transform this curve into a circle. 
The first step can be performed by the following transformation: 

2

' '
az

z
z= +                                                          (1) 

Wherez is a complex quantity defining the points of the plan describing the flow around the 

profile and 
'z  is another complex quantity defining the points of the plan describing the flow around the 

curve quasi-circular, the constant “a” is a dimension length, is merely a geometrical scale factor 
and is added to preserve dimensions. The plans z and 'z  are shown superposed in the Figure 2. 

C is a circle of unit radius, and B is the curve quasi-circular. 
We will later determine the flow in the plan 'z  
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Fig.2. Transformation of a curve non-circular B in an aerodynamic profile 
 

The curve B is given by the relation '
i

z ae
y q+

= , where yis a real function of the angle θ, with θ is 

varies from zero to 2π and i is an imaginary unit. 
According to the relation (1), we have:  

( ) cos ( )sin
i i

ae ae a e e ia e e
y q y q y y y y

z q q
+ - - - -

= + = + + -  

This relation may also be conveniently expressed in hyperbolic functions: 

2 cosh cos 2 sinh sina iaz y q y q= +  

Since x iyz= + , the coordinates (x, y) of the profile are given by:    
2 cosh cos

2 sinh sin

x a

y a

y q

y q

=

=
                                (2) 

We get a relation between θ and the coordinates (x, y) as follows:       

cosh
2 cos

sinh
2 sin

x

a

y

a

y
q

y
q

=

=

 

And since 2 2
cosh sinh 1y y- =, we get:  

2 2

1
2 cos 2 sin

x y

a aq q
- =

å õ å õ
æ ö æ ö
ç ÷ ç ÷

  

Or again:
 

( )
2

2 2
2sin

y
p p

a
q= + +       

( )
2

2

arcsin
2

y
p p

a
q

+ +

=

å õ
æ ö
æ ö
æ ö
æ ö
ç ÷

                        (3) 

Where  
2 2

1
2 2

x y
p

a a
= - -
å õ å õ
æ ö æ ö
ç ÷ ç ÷ 

z

z
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Similarly, we get a relation between y and the coordinates of the profile by the following 

equation: 
2 2

1
2 cosh 2 sinh

x y

a ay y
+ =

å õ å õ
æ ö æ ö
ç ÷ ç ÷ 
The curves y = Cst are ellipses in the plan z 

Or again: ( )
2

2 2
2sinh

y
p p

a
y=- + +

 

( )
2

2

arcsin
2

y
p p

a
hy

- + +

=

å õ
æ ö
æ ö
æ ö
æ ö
ç ÷

                        (4) 

We are now on the point of reproduce the conformal representation of the profile in the plan 'z  , 
since for each point of the profile (x, y), θ and yare determined. 

The radius of curvature at the tip of the main axis is: 
2

(2 sinh )

2 cosh

a

a

y
r

y
=  

2

2(sinh )

2 cosha

r y
y

y
= @

 
, Therefore: 

2a

r
y@  (for ysmall) 

This relation is useful for the determination of ynear the nose and the tail. 

The leading edge corresponds to θ=0 is located at: 
2

2 12 cosh 2 1 2 2
2 2

a a a a a
y

y y r@ + = + = +
å õ
æ ö
ç ÷

 

2.2.4. Calculation of the velocity field 

To determine the velocity at any point (x. y) of the profile, we usually begin with the 
determination of the velocity around a circle in a two-dimensional flow. 

Unlike the usual, we will, however, take the radius of the circle equal to 0ae
y

 , where 
0
y  is a 

small and constant quantity. 
The potential function of the flow around the circle is given by [11]: 

0

0

22

ln
2

a e i z
w V z

z ae

y

y
p

G
=- + -
å õ
æ ö
ç ÷

                 (5) 

And the velocity is given by: 
0

22

2
1

2

dw a e i
V

dz z z

y

p

G
=- - -
å õ
æ ö
ç ÷

                     (6) 

Where G is the circulation. This expression must be cancel at the rear stagnation point 

(condition of Kutta), whose coordinate is 0 ( )Ti
z ae

y a e+ +
=-  , where α is the angle of attack and T

e  

is the angle of attack which corresponds to a zero lift. We get: 
0

0

2 ( ) ( )2

2

2
1 4

2

T Ti i
z a e e e

V Vae
i z i

y a e a e

yp
p

+ - +
-

G=- - =
å õ å õ
æ ö æ ö

ç ÷ç ÷
 

    04 sin( )
T

Vae
y

p a e= +                                                                          (7) 
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This flow around the circle can now be transformed into a flow around any other shape. 

Now we will transform this circle, defined by 0 i
z ae

y j+
=   in a B curve defined by the relation

'
i

z ae
y q+

= . For this purpose, we use the general transformation 
1( )

'
n n n

n

A iB
zz ze

+ä

=  . The constants 
are determined by the boundary conditions. 

By definition: 0 ( )
'

i
z ze

y y q j- + -
=  

Therefore: 
0

1( ) ( ) nn n
n

i A iB
z

y y q j- + - = +ä   

Or: 
0

1( ) ( ) (cos sin )nn n
n

i A iB n i n
r

y y q j j j- + - = + -ä

 
Where z is expressed in polar form by: (cos sin )z r ij j= +  

And by applying the theorem of Moivre:  
1 1 (cos sin )n n n i n

z r
j j= -  

Equate the real and imaginary parts, we get the two expansions of Fourier: 

0
cos sinn n

n n
n

A B
n n

r r
y y j j- = +ä

è ø
é ùê ú                                         

(a)
 

cos sinn n
n n

n

B A
n n

r r
q j j j- = -ä

è ø
é ùê ú                                             

(b) 

The values of the coefficients n
n

A

r
, n

n

B

r
, as well as the quantity 

0
y can be determined from the 

equation (a) as follows: 

2

0
1 cosn

n

A
n d

r

p
y j j

p
= ñ

                                                          
(c)

 
2

0
1 sinn

n

B
n d

r

p
y j j

p
= ñ

                                                          
(d)

 
2

00

1

2
d

p
y y j

p
= ñ

                                                                        
(e) 

The quantity θ-φ is necessary in the analysis that follows. Eliminate the coefficients n
n

A

r
, n

n

B

r
 , 

in (b) through (c) and (d). We get:     
2 2

0 0
1 1( ) cos sin sin cos

c c c
n

n n d n n d
p p

q j j y j j j y j j
p p

- = -ä ñ ñ  

The index c is added to indicate that the angles thus distinguished are held constant while the 
integrations are performed, the expression can be simplified: 

2 2

0 0
1 1( ) (sin cos cos sin ) sin ( )

c c c c
n n

n n n n d n d
p p

q j y j j j j j y j j j
p p

- = - = -ä äñ ñ

 
But: 

( )
cos(2 1)

( ) 21sin ( ) cot
2 2

2sin
2

c

c

c
n c

n

n

j j

j j
j j

j j

-
+

-
- = -ä

-

 

Therefore:  2 2

0 0

( )
cos(2 1)

( )1 1 2( ) cot
( )2 2 2

2sin
2

c

c

c

c

n

d d
p p

j j

j j
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j jp p

-
+

-
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The last integral is identically zero, (See Wilson. E. B. advanced calculus, p. 368, Follow method of 
exercise 10). Then: 

2

0

( )1
( ) cot

2 2

c

c
d

p j j
q j y j

p

-
- = ñ

                   (8) 
We will now summarize the stain to determine the velocity at any point on the surface of the 
profile. 

The velocity at the surface of the circle is
dw

dz
 . For the corresponding point on the curve B in the 

plan 'z  and on the profile in the planz, the velocities are respectively
'

dw dz

dz dz
 and

'

'

dw dz dz

dz dz dz
 . 

From where: 

( )2 2

2
1 1 11 ' ( ) ( ) cos ( )sin

' ' ' '''

i id a az ae ae a e e ia e e
z z z zzdz

y q q y y y yz
q q

+ - - -
= - = - = - = - + +è øê ú       

 
 
Using the relation (2): 

2 sinh
sin

y
a y

q
=   and    2 cosh

cos

x
a y

q
=  

We get: 

1 ( cot tan )
''

d
y ix

zdz

z
q q= +

                          (9)
 

Now it remains to find the ratio
'

dz

dz
 

From the relation
1( )

'
n n n

n

A iB
zz ze

+ä

= , we get: 
'

1 1' ( ) nn n
n

dz d
z A iB

z zdz dz
= + +ä
è ø
é ùê ú

 

Or           [ ]0

'
1' ( ) ( ) ' ( ( ) ln )

dz d d
z i z i z

zdz dz dz
y y q j y q j= + - + - = + - +

å õ
æ ö
ç ÷

  

But 0 i
z ae

y j+
= , from where: 

0
1 (ln ) (ln ) ( )

d d d
z a i i

z dz dz dz
y j j= = + + =  

Therefore: 
'

' ( ( ) ) ' ( )
dz d d

z i i z i
dz dz dz

y q j j y q= + - + = + 

This expression can be written: 
'

' ( )
dz d d

z i
dz d dz

q
y q

q
= +  

But we have: 1 d
i

z dz

j
=  

Or                       ( )
dz

id id id
z

j j q q= = - + 

[ ]1 2 sinh cos 2 cosh sin
'

a ia
z

y q y q= +
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And                       
( )

1
dz d

iz
d d

j q

q q

-
= +
å õ
æ ö
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From where: 
' '

1
( )

1

dz z d
i

ddz z d

d

y q
eq

q

= - +

+

 

Where e j q= - 

Or                            
' ' 1 '

1 '

dz iz
zdz

y

e

-
=

+                                      
(10) 

Where 'eand 'y  indicate 
d

d

e

q
 and 

d

d

y

q
 respectively. 

 
The equations (9) and (10) give now: 

'' 1 '1 ( cot tan )'
' 1 '

d dz d izy ix
zdz dz dz z

z z y
q q

e

-
= = +

+
 

                      = 
1 '1( cot tan )
1 '

i
y ix

z

y
q q

e

-
+

+
                            (11) 

Because we are interested in the magnitude more than the direction of the velocity, we can write 
for the numerical value of this expression. 

        
0

2 2 2 2 2
( cot tan )(1 ' )

(1 ')

d y x

dz ae
y

z q q y

e

+ +
=

+
                            (11a) 

The quantity 
2 2

2 2
cot tan

2 2

y x

a a
q q+

å õ å õ
æ ö æ ö
ç ÷ ç ÷

 is easily seen to be equal to (by the relation (2)): 

2

2
sin

2 sin

y

a
q

q
+

å õ
æ ö
ç ÷

, or even: 2 2
sinh siny q+  

From where: 

 
0

2

2 2
sin (1 ' )

2 sin
2

(1 ')

y

ad

dz e
y

q y
qz

e

+ +

=
+

è øå õ
é ùæ ö
ç ÷é ùê ú

                              (11b) 

The numerical value of the velocity on the surface of the circle is obtained by the equations (6) 
and (7) as follows: 

Replacing the general point 0 ( )i
z ae

y a j+ +
=  , with α angle of attack, in the equation (6). 

2 ( ) ( )
(1 2 sin( )

i i

T

dw
V e iV e

dz

a j a j
a e

- + - +
=- - - +  

 
2

2 2 2
4sin ( ) 8sin( ) sin( ) 4sin ( )

T T

dw
V

dz
a e a e a j a j= + + + + + +è øê ú

 

[ ]2 sin( ) sin( )
T

dw
V

dz
a j a e= + + +

 

[ ]1 cos 2( ) 2sin( )sin( ) (sin 2( ) 2sin( ) cos( ))
T T

V ia j a e a j a j a e a j=- - + + + + + + + + +
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Replacing φ by θ+ε (
T
e , the angle of attack corresponds at zero lift, is the value of φ-θ at the 

tail), we have: [ ]2 sin( ) sin( )
T

dw
V

dz
a q e a e= + + + + 

For a point on the profile, we have therefore
dw dz

v
dz dz

= , and from (11), and finally: 

[ ] 0

2 2 2

sin( ) sin( ) (1 ')

(sinh sin )(1 ' )

T
e

v V

y
a q e a e e

y q y

+ + + + +
=

+ +
                     (12) 

Or again   .[sin( ) sin( )]
T

v F
V

a q e a e= + + + + 

With         
0

2 2 2

(1 ')

(sinh sin )(1 ' )

e
F

y
e

y q y

+
=

+ +
 

Where the various symbols have the following meanings: 
v is the velocity at any point (x ,y) of the airfoil. 
V is the uniform velocity of flow at infinity. 
y is the ordinate of the airfoil measured from the x axis. 
α is the angle of attack measured from the x-axis as shown in the Figure 1. 
y, θ,y, 'y ,eet 'e are all functions of x. 

2.2.5. Calculation of the pressure field 

The velocity, pressure and other properties of fluid flow can be functions of time. If a flow is such 
that the properties at every point in the flow do not depend upon time, it is called a steady flow. 
In this state, the paths of the particles coincide with the streamlines so that no fluid passes 
normal to them. The Bernoulli formula then holds and the total pressure head H along a 

streamline is a constant, that is: 2 '1
2

v p Hr + =  

Where '
p  is the static pressure, v  the velocity, and  r the density. If we denote the 

undisturbed velocity at infinity by V, the quantity 
0

' '
p p-  by p , and 21

2
Vr by q, the Bernoulli 

formula may be expressed as:  ( )
2

0

' '

1
p

p p p vC
q Vq

-
= = = -                                 (13) 

3. Practical application for S809 airfoil 

3.1. Application of method of procedure 

Now, we will apply the mathematical model presented above to evaluate the pressure 
coefficients to the typical aerodynamic airfoil S809. The calculation procedure is as follows: 

a. The axis of coordinates is drawn as shown on Figure1. The dimensional length a is taken is 
equal to 1. 
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              Fig.3. S809 Airfoil Profile 

b. The rectangular coordinates (x, y) of the upper and lower surfaces of the airfoil are 
determined with respect to this axis of coordinates. 

c. The elliptic coordinates (θ,y) are given by the relations (3) and (4). 

d. y is plotted as a function of θ 

2 2

0 00

1 1

2 2
d d

p p
y y j y q

p p
= @ñ ñ   

This integral can be determined numerically by the method of the trapezoid: 

( )
1

1

0 1
0

1

2 2

n
i i

i i
i

y y
y q q

p

-
+

+
=

+
= -ä  

Where n is the number of points on which the function yis tabulated, it is equal to the 

number of points (x, y) of the upper and lower surfaces of the airfoil 

e. From the y versus θ curve, 'y is determined 

 
                 Fig.5. The y  against θ curve for the S809 airfoil 

             'y can be determined numerically as follows: 

Before starting the calculation of slopes 'y , we must firstly pass through a numerical 

interpolation of our function ( )y q 

The type of interpolation that we have adopted is the Spline interpolation despite that it 
is more complex and costly than the Polynomial interpolation (Lagrange, Neville-Aitken, 
Newton), but however, it has the advantage of great flexibility and provides an 
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interpolating of better quality for most physical problems. Particularly the Cubic Spline 
interpolation which its algorithm is presented below: 

( )( )( ) ( )( )( )
( ) ( )

2 22 2

1 1

1 1 1
1 1( )

6 6

i i i i i i

i i i i i i i
i i

i i

h h

P M M
h hh h

q q q q q q q q
q y q q y q q

- -

- - -

- - - - - -

= + + - + -

1,........i n= . With 
ih =

1i i
x x

-
-  

Where , , ........
0 1

M M Mn are solutions of the linear system: 

( ) ( )1 1

1 1 1 1
1

1 1
6 3 6

i i ii
i i i i i i i

i i

h h hh
M M M

h h
y y y y+ +

- + + -
+

+
+ + = - - - 

1,........ 1i n= -, With 
0

M and 
n

M arbitrary (for example
0

0
n

M M= =). 

Now, the slopes 'y are determined by the calculation of the numerical derivative using 

the method of finite difference centered. 
For the two extreme points, the calculation of the numerical derivative (at the first and 
last points of our series of values) can be done by the method of finite difference before 
(Resp. the method of finite difference rear). 
Also, we can determine the slopes 'y by the derivation of the polynom of the Cubic 

Spline interpolation:  

( )( ) ( )( )2 22 2

1
' 1

1

3 3

( )
6 6

i i i i
i i

i i i

i i i

h h

P M M
h h h

q q q q y y
q

-
-

-

- - + - - -
= + +  

f. Determine the integral 2

0

( )1
cot

2 2

c

c
d

p j j
e y j

p

-
=- ñ  by the formula shown in the appendix 

of the reference [7]. 

( ) ( ) ( ) ( )0 1 1 1 2 2 2 3 3 3 4 4 4

'1
c c

a a a a ae y y y y y y y y y
p - - - -

=- + - + - + - + -è ø
ê ú

 

Whit 

2 1
sin

20log
2 1

sin
20

n

an n

p

p

+

=
-

  ( 4,....... 4n=- +) 

Where '
c
y  is the slope of the ycurve at 

c
j j=  

1
y  : The value of y at

5c
pj j= + , 

1
y
-

: The value of yat 
5c
pj j= - . 

2
y  : The value of y at 2

5c
pj j= + , 

2
y
-

: The value of y at 2
5c
pj j= - . 

3
y  : The value of y at 3

5c
pj j= + , 

3
y
-

: The value of y  at 3
5c
pj j= - . 

4
y  : The value of y at 4

5c
pj j= + , 

4
y
-

: The value of y at 4
5c
pj j= - . 

g. From the e versus θ curve, 'eis determined 
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                   Fig.5. The e against θ curve for the S809 airfoil 

And also it can be determined numerically by the method shown at the 5th step of 
procedure. 

h. Determine the quantity F given by the formula: 
0

2 2 2

(1 ')

(sinh sin )(1 ' )

e
F

y
e

y q y

+
=

+ +
 

i. Determine the quantity (θ+ε) in radians and degrees 

j. Calculate the quantity Sin (θ+α+ε) +Sin (α+
T
e ), where α is the angle of attack. 

k. Calculate the velocity field : 

.[sin( ) sin( )]
T

v F
V

a q e a e= + + + +

 

             

v
V

: The ratio of the local velocity at the airfoil surface to the uniform stream velocity. 

l. Calculate the pressure coefficient: 

            
( )

2

1
p

p vC
q V

= = -

 

            

p

q
 : The ratio of the local superstream pressure to the dynamic pressure. 
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3.2. Computational algorithm 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig.6. Computational algorithm 
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4. Results and discussion 

In order to compare theory with experimental results, some illustrative examples are presented 
to demonstrate the capabilities and accuracy of the adopted method to predict the pressure 
distribution around airfoil. Experimental results were obtained at the Delft University in 1.8 m × 
1.25 m low turbulence wind tunnel [10]. Another similarly sized model of the S809 was tested at 
Ohio State University Aeronautical and Astronautical Research Laboratory 3x5 subsonic wind 
tunnel [12]. Our comparisons of the two experimental data sets showed that the results are 
essentially identical.  

Figures 7 through 12 show comparisons between the computed and experimental pressure 
distributions for angles of attack of  0°, 1°02', 5°13', 9°22', 14°24' and  20°15', respectively. 

 

Fig.7. Pressure Distribution curve along x-axis of S809 for α= 0°                         Fig.8. Pressure Distribution curve along x-axis of S809 for α= 1°02' 

 

Fig.9. Pressure Distribution curve along x-axis of S809 for α=5°13'                 Fig.10. Pressure Distribution curve along x-axis of S809 for α=9°22' 
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The pressure coefficients comparisons for 0° and 1°02' show reasonably good agreement over 
the entire airfoil surface, except in the regions of the laminar separation bubbles Highlighted by 
the experimental data just aft of the midchord on both the upper and lower surfaces.  
Figure 9 shows that the pressure coefficients comparison for 5°13’ is good, measured and 
calculated curves show the same tendencies, except over the forward half of the airfoil where a 
small differences in amplitude appear. 

 

 

 

 

 

 

 

 

Fig.11. Pressure Distribution curve along x-axis of S809 for α=14°24'              Fig.12. Pressure Distribution curve along x-axis of S809 for α=20°15' 

Figures 10 through 12 show the pressure distributions for angles of attack of 9°22', 14°24', and 20°15', 
respectively. 

 

The pressure distribution comparisons were matched to the same angle of attack as the wind 
tunnel cases. All calculations were made at a Reynolds number of 2×106. 

For these angles of attack, Measured and calculated curves show the same tendencies and are 
almost in phase. However, a slight difference for 9°22' and a considerable difference for 14°24' 
and 20°15' in amplitude are observed. The experimental data show that the upper-surface 
transition point was moved forward to the leading edge. 

For 9°22', the computed pressure distribution agrees well with the experiment except for 
approximately the last 10% of the trailing edge. The experimental data show that there is a 
small separation zone on the upper surface in this region, and some differences in amplitude 
over the forward half of the airfoil are observed. 

For 14°24' and 20°15', the experimental data show that the flow is separated over most the 
upper surface of airfoil. The agreement between numerical and experimental results 
deteriorates for these angles of attack, and viscous effects start to show up, until, finally, the 
airfoil stalls. The inviscid solutions cannot capture this part of the physics. 

The observed differences are due to the several phenomena and to the assumptions of the 
method adopted, we cite: 

¶ The flow is assumed potential, in other words, the fluid is considered as frictionless 
incompressible and inviscid. 
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¶ The viscous effect is important and the disparities include differences in the magnitude 
of the pressure coefficients. 

¶ The upper surface trailing edge separation phenomena which is not modeled in the 
pressure distributions predicted by the method. 

¶ The pressure at the tail of the airfoil shows some error because the effect of the 
thickening layer is not captured. 

¶ The abnormal growth of the boundary layer that occurs within the laminar separation 
bubble is not accurately predicted by the method. 

¶ The aerodynamic stall phenomenon cannot be captured by the inviscid solutions. 

5. Conclusion 

This work focuses on the application of the potential theory for the study of wind turbine blade 
airfoil aerodynamic characteristics. 
The Theodosen’s model is used to develop a numerical code to predict pressure distribution 
around S809 airfoil. 
To validate the numerical code, we have compared obtained results with the experimental data 
of the Delft University in 1.8 m × 1.25 m low turbulence wind tunnel. This comparison 
demonstrates the ability of the used model to produce results consistent with experience with 
an acceptable tolerance. However, we have note the existence of a difference in amplitude due 
to the different assumptions adopted in this model, and also due to certain complex physical 
phenomena. 
The future work consists in computing of the aerodynamic coefficients and in coupling this 
model with Blade Element Momentum (BEM) method, while putting in place a boundary layer 
calculation in order to take into account the viscous effects on the airfoil and the area of the 
aerodynamic stall. 
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